

Database Interface
for Python

VVVersion 2.1 eerrssiioonn 22..11

mmxxOODDBBCC
CCoonnnneecctt

Copyright  2005-2015 by eGenix.com GmbH, Langenfeld

All rights reserved. No part of this work may be reproduced or used in a any form or
by any means without written permission of the publisher.

All product names and logos are trademarks of their respective owners.

The product names "mxBeeBase", "mxCGIPython", "mxCounter", "mxCrypto",
"mxDateTime", "mxHTMLTools", "mxIP", "mxLicenseManager", "mxLog", "mxNumber",
"mxODBC", "mxODBC Connect", "mxODBC Zope DA", "mxObjectStore", "mxProxy",
"mxQueue", "mxStack", "mxTextTools", "mxTidy", "mxTools", "mxUID", "mxURL",
"mxXMLTools", "eGenix Application Server", "PyRun", "PythonHTML", "eGenix" and
"eGenix.com" and corresponding logos are trademarks or registered trademarks of
eGenix.com GmbH, Langenfeld

Printed in Germany.

Contents

Contents

1. Introduction..1

1.1 Technical Overview...1

1.2 Security ...2

1.3 Scope ..2

2. mxODBC Connect Server Installation3

2.1 Upgrading mxODBC Connect Server3

2.1.1 Upgrading from 2.1.4 to 2.1.5 ... 3
Addition of allow_clients configuration variable................................ 3

2.1.2 Upgrading from 2.1.3 to 2.1.4 ... 4
Addition of the BinaryNull singleton ... 4
Changes to the SSL support.. 4

2.1.3 Upgrading from 2.1.2 to 2.1.3 ... 4
Increased default RSA key length.. 4
Changes to the SSL support.. 5

2.1.4 Upgrading from 2.1.1 to 2.1.2 ... 5
Changes to the SSL support.. 5

2.1.5 Upgrading from 2.1.0 to 2.1.1 ... 5
Changes to the SSL support.. 5

2.1.6 Upgrading from 2.0 to 2.1 ... 6
Changes to user authentication .. 6
Update to the mxODBC 3.3 API ... 7
ODBC Driver/Manager Compatibility Enhancements 7

2.1.7 Upgrading from 2.0.x to 2.0.4 ... 9
New connection_cursortype server configuration parameter............ 9
Enhance MS SQL Server and IBM DB2 Fetch Performance 9

2.1.8 Upgrading from 1.0 to 2.0 ... 10
Windows Service Changes ... 10

mxODBC Connect - Python Database Interface

Configuration File Changes... 10
Security Related Changes.. 10
Network Related Changes... 11
mxODBC Feature Changes... 11

2.2 mxODBC Connect Server Installation on Windows 11

2.2.1 Prerequisites .. 11
2.2.2 Procedure .. 12

Step-by-step Installation ... 13
Server Tray Icon.. 18
Configuring the Firewall.. 18
Edit the Configuration... 18
Controlling Automatic Startup of the Server.................................... 18
Troubleshooting ... 18

2.2.3 Uninstall .. 19
2.2.4 Reinstallation or upgrading .. 19

2.3 mxODBC Connect Server Installation on Unix.................. 19

2.3.1 Prerequisites .. 20
2.3.2 Procedure .. 20

Step-by-step Installation ... 21
Server User Account and Group ... 22
Configuring the Firewall.. 22
Edit the Configuration... 23
Starting/Stopping the Server.. 23
Controlling Automatic Startup of the Server.................................... 23
Troubleshooting ... 23

2.3.3 Uninstallation .. 24
2.3.4 Reinstallation or upgrading .. 24

2.4 mxODBC Connect Server Configuration........................... 25

2.4.1 mxODBC Connect Configuration File Syntax 25
2.4.2 mxODBC Connect Server Configuration File 26

[Connection_Name] ... 27
[Authentication].. 31
[Session]... 32
[Unix] ... 34

Contents

[Windows] ... 34
[Activity]... 34
[Logging] .. 35

2.4.3 Server Connection Setup ... 36
Basic configuration ... 36
Adding SSL support is easy... 36
Even more secure: SSL-only connections.. 37
Listening on more than one port... 37
Allowing connections from other networks 38

2.4.4 Configuring Certificate Based Authentication....................................... 39
Using a file with client certificates .. 39
Using a directory with client certificates ... 39
Using a list of SHA1 hex digests in the configuration file 40
Using a file with SHA1 digests.. 40

2.4.5 Configuring User Authentication.. 41
Authentication Protocol .. 41
Password File authorized-users.txt ... 42
Using the password-tool .. 42
Command-line Options of the password-tool................................. 42
Interactive Mode of the password-tool ... 44

2.5 ODBC Driver Configuration Hints.....................................44

2.5.1 Setting up the optimal communication technique................................ 45
2.5.2 Disabling options that are not needed for local connections................ 45

3. mxODBC Connect Client Installation46

3.1 Upgrading mxODBC Connect Client47

3.1.1 Upgrading from 2.0 to 2.1 ... 47
mxODBC 3.3 API ... 47
Stored Procedures .. 47
User Customizable Row Objects .. 48
Fast Cursor Types... 48
More new Features... 48
mxODBC Connect API Enhancements.. 49
Asynchronous Processing... 49
Security Enhancements .. 49

mxODBC Connect - Python Database Interface

3.1.2 Upgrading from 2.0.x to 2.0.4.. 50
New connection_cursortype server configuration parameter 50

3.1.3 Upgrading from 2.0.x to 2.0.3.. 50
New .cursortype Attribute .. 50
Enhance MS SQL Server and IBM DB2 Fetch Performance 50

3.1.4 Upgrading from 1.0 to 2.0 ... 51
Network Related Changes... 51
Configuration File Changes... 51
mxODBC Feature Changes... 51

3.2 mxODBC Connect Client Installation on Windows 52

3.2.1 Prerequisites .. 52
3.2.2 Procedure .. 53
3.2.3 Uninstall .. 53

3.3 mxODBC Connect Client Installation on Unix 53

3.3.1 Prerequisites .. 54
3.3.2 Installation using prebuilt package archives ... 54

System-wide Installation ... 55
User Installation.. 55

3.3.3 Uninstall when using prebuilt package archives................................... 56
3.3.4 Installation using egg archives.. 56
3.3.5 Uninstall when using egg package archives.. 57

4. Using mxODBC Connect.................................... 58

4.1 Architecture of mxODBC Connect 58

4.2 mxODBC Connect Client Configuration............................ 59

4.2.1 mxODBC Connect Client Configuration File Format 59
[Connection_Name] ... 59
[Communication] ... 61
[Authentication].. 62
[Session]... 62
[Logging] .. 63

Contents

[Integration] ... 64
4.2.2 Configuration Dictionary Format ... 64
4.2.3 mxODBC Connect Client Configuration Hints..................................... 65

4.3 mxODBC Connect Client Example66

4.3.1 Client Configuration .. 66
4.3.2 Connecting to the mxODBC Connect Server 66

Storing ServerSessions as module globals....................................... 67
4.3.3 Exception Handling.. 68

4.4 Testing ..68
test.pyc Options... 69

5. mxODBC Connect Client Python API70

5.1 API Design...70

5.2 Multi-Threaded Applications ...71

5.2.1 Recommended Setups... 71
5.2.2 Logging.. 72

5.3 gevent Support ..73

5.3.1 Import Order... 73
5.3.2 gevent Monkey-Patching ... 73

5.4 mxODBC Connect Client ServerSession Object73
Module: ... 74
Object Constructor: ... 74
Object Attributes:... 74
Object Methods: .. 75

5.5 mxODBC Connect Client Errors ..75

5.5.1 Server Side Errors .. 76
5.5.2 mxODBC Connect Error Module ... 77
5.5.3 Session Errors.. 78

mxODBC Connect - Python Database Interface

5.6 mxODBC Connect Constants Module 78

5.6.1 Available Constants.. 79

5.7 mxODBC API .. 79

6. Differences between mxODBC and mxODBC
Connect 80

6.1 Additional Features in mxODBC Connect 80

6.1.1 Improved portability .. 80
6.1.2 Improved data type support... 81
6.1.3 Improved Scalability... 81
6.1.4 Asynchronous Execution Support using gevent 81
6.1.5 Automatic Fail-over.. 81
6.1.6 Data compression.. 82

6.2 Differences and Limitations... 82

6.2.1 Parameter Data Types.. 82
No support for Python 2.7 memoryviews 82

6.2.2 Garbage collection and closing of connections / cursors 83
6.2.3 Exceptions ... 83
6.2.4 Converter Functions .. 84
6.2.5 Error Handlers ... 84

Database Warnings... 84
6.2.6 Server-side Exceptions ... 84
6.2.7 RowFactory Helper Module ... 85
6.2.8 Using the cursor.row attribute ... 85

Pickling Dynamic Row Classes ... 86
6.2.9 Using the cursor.rowfactory attribute .. 86
6.2.10 Using iterators/generators with cursor.executemany() 87

7. Troubleshooting... 88

Contents

7.1 Frequently Asked Questions (FAQ)88

7.1.1 Where can I find the server.log file on Windows ?............................... 88
7.1.2 Where can I find the server.log file on Unix ? 88
7.1.3 The Windows installer stops with a message that a file cannot be
installed 88
7.1.4 mxODBC Connect Server for Windows doesn't start 89
7.1.5 mxODBC Connect Server for Unix doesn't start 89
7.1.6 Importing exceptions from mx.ODBC.Error fails (no such module) 90
7.1.7 Exceptions are not caught as expected at client side 90
7.1.8 Client cannot connect to the mxODBC Connect Server....................... 90
7.1.9 Converter function has been set, but not called................................... 91
7.1.10 Error handlers don't seem to work... 91
7.1.11 Printing exception tracebacks does not include the server side............ 91
7.1.12 InterfaceError: Connection limit exceeded. Your license allows 20
physical database connections. .. 91
7.1.13 Error "Maximum number of sessions reached." with unlimited
connections license.. 92
7.1.14 Client on different subnet than server cannot connect to the server 92

8. Hints & Links to other Resources.......................94

8.1 More Sources of Information...94

9. Support ...96

10. History & Changes ..97

11. Copyright & License..98

11.1 eGenix.com Commercial License Agreement98

mxODBC Connect - Python Database Interface

11.2 Third-Party Licenses .. 109

1. Introduction

1. Introduction
mxODBC has proven to be the most stable and versatile ODBC interface
available for Python. It has been in use by many Python users and
companies for years and is actively maintained by eGenix.com to meet the
requirements of modern database applications, which our customers have
built on top of mxODBC.

This manual will give you an in-depth overview of mxODBC Connect, the
new networked client-server edition of mxODBC, providing ease of
configuration, ease of deployment and scalability for all your mxODBC
applications. It is written as technical manual, so background in Python and
database programming is needed.

1.1 Technical Overview

mxODBC Connect allows your existing mxODBC based applications to
access ODBC databases over a TCP/IP network and enables you to
implement load balancing, fail-over, virtualisation and related technologies
for your application.

mxODBC Connect consists of a stand-alone server and client packages
which emulate the mxODBC API on the client side.

The mxODBC Connect Server is available for Windows, where it runs as
Windows service, and on Unix platforms, where it can be deployed as
daemon process.1

The client package emulates the native mxODBC API, so you can continue
to use your application code when porting from the stand-alone version of
mxODBC to mxODBC Connect. Furthermore, mxODBC Connect will allow
you to port your application to platforms which were previously not
supported by mxODBC due to limited availability of ODBC drivers.

1 For the list of available platforms, please see the eGenix.com website.

1

http://www.egenix.com/

mxODBC Connect - Python Database Interface

1.2 Security

Unlike many ODBC drivers, mxODBC Connect comes with optional
support for SSL based encryption of all communication, making it possible
to send queries and data over public or otherwise unsafe networks.

Security can further be enhanced by enabling certificate verification, which
will lower the risk introduced by the possibility of stolen database
passwords or security holes in the database server or the underlying
network architecture.

Note:
Only the communication between the mxODBC Connect Client and
Server is encrypted. The ODBC driver used by the mxODBC Connect
Server may still send unencrypted data and queries over the network.
Please consult your ODBC driver documentation for details.

You can minimize this risk by installing the mxODBC Connect Server
directly on the database server, e.g. the Windows machine running SQL
Server. In most cases, the ODBC driver of the target database will then use
lower level interfacing techniques such as shared memory, pipes or domain
sockets to communicate with the database kernel, so that no
communication is sent over the network.

1.3 Scope

This manual only explains features and configuration of the mxODBC
Connect product.

Please refer to the mxODBC User Manual for mxODBC and Python DB API
2.0 specific details. The mxODBC User Manual contains all the needed
details to develop against the mxODBC API exposed by the mxODBC
Connect product.

2

2. mxODBC Connect Server Installation

2. mxODBC Connect Server
Installation
The mxODBC Connect product consists of a stand-alone server component
and client packages for various platforms. The installers for both
components are distributed separately.

The mxODBC Connect Server needs to be installed and configured only on
the machine that has the ODBC driver you wish to use. This will typically
be the database server itself.

The mxODBC Connect Server is a stand-alone product and comes with its
own Python run-time, so you don't need to install Python separately on the
server. Existing Python installations on the server are not modified in any
way by the mxODBC Connect Server.

2.1 Upgrading mxODBC Connect Server

This section addresses server side changes between releases. For mxODBC
Connect Client changes, please see section 3.1 Upgrading mxODBC
Connect Client.

IMPORTANT: Please always back up your configuration before running an
upgrade of the mxODBC Connect Server. In particular, the certificates
and private keys generated during the installation may get overwritten
when doing an in-place upgrade.

2.1.1 Upgrading from 2.1.4 to 2.1.5

 Addition of allow_clients configuration variable

mxODBC Connect Server normally defaults to only allowing connections
from clients on the networks defined in the connection sections of the
server configuration file.

3

mxODBC Connect - Python Database Interface

In some cases, you may want to allow connects from networks outside
those networks, e.g. to have clients on different subnets than the ones on
which the server runs connect to it.

In order to make this possible, we have exposed a new configuration
variable allow_clients in the [Session] section of the server
configuration.

This variable allows overriding the default of using the networks defined in
the connection sections as basis for the list of allowed client IP addresses.

When using this variable, special care has to be taken to keep the
connection section networks and the ones from which the server allows
connections in sync.

2.1.2 Upgrading from 2.1.3 to 2.1.4

 Addition of the BinaryNull singleton

If you want to make use of the new BinaryNull singleton which was
added as work-around for a problem with setting VARBINARY columns to
NULL when using cursor.executedirect() with MS SQL Server, please
make sure you upgrade both mxODBC Connect clients and servers to the
same release version.

 Changes to the SSL support

The mxODBC Connect Server was upgraded to the egenix-pyopenssl
0.13.11 release. Apart from fixing security issues at the OpenSSL level, this
should not affect SSL connectivity.

2.1.3 Upgrading from 2.1.2 to 2.1.3

 Increased default RSA key length

If you have been using the certificates which mxODBC Connect Server
automatically generates during installation, you may want to recreate them
again using the initcert.exe or bin/initcert script, since they only used an
RSA key length of 1024 bits, which today is considered insecure.

For mxODBC Connect Server 2.1.3, we have updated the default key length
to 4096 bits for the self-signed CA root key and 2048 for the client keys.

4

2. mxODBC Connect Server Installation

To recreate the set of CA/server/client certificate and private key files,
simply run the script again.

Note that this will overwrite any existing certificate and private key files,
so you may want to create a backup of all *.cert and *.pkey files before
doing so.

On Windows:

cd C:\Program Files\eGenix.com\mxODBC Connect Server
initcert.exe

Be sure to check the file permissions on the generated keys and certificates.
The *.pkey files should be readable by the service user only.

On Linux:

su - mxodbc
bin/initcert

Be sure to check the file permissions on the generated keys and certificates.
The *.pkey files should be readable by the mxodbc user only.

 Changes to the SSL support

The mxODBC Connect Server is now built with Python 2.7.9 and includes
the new ssl module. This does not have any effect on the SSL connectivity
of the mxODBC Connect Server, since it has always been using the egenix-
pyopenssl based SSL connectivity features.

2.1.4 Upgrading from 2.1.1 to 2.1.2

 Changes to the SSL support

The SSL cipher string was updated to enforce using more secure setups.
This should not affect operation of existing mxODBC Connect Client
installations.

2.1.5 Upgrading from 2.1.0 to 2.1.1

 Changes to the SSL support

Due to the recently found POODLE attack on SSLv3, we have chosen to
disable support for SSLv3 on the mxODBC Connect Client side.

5

mxODBC Connect - Python Database Interface

As a result, mxODBC Connect Clients version 2.1.1 and later will no
longer be able to communicate with mxODBC Connect Servers versions
2.1.0 and earlier, when using SSL/TLS enabled connections.
Communication on plain text connections is not affected.

The mxODBC Connect Server will still support SSLv3, since previous
versions of mxODBC Connect only supported this SSL version. Existing
mxODBC Connect Client installations will therefore continue to work.

We still would like to encourage an upgrade to the latest mxODBC Connect
Client version, since this gives you the best security setup. Support for
SSLv3 will completely be removed from mxODBC Connect in one of the
next releases.

If you upgrade both clients and server, you will not see any changes and
the setup will directly benefit from the new TLSv1.2 support built into
mxODBC Connect Server when using the eGenix pyOpenSSL add-on on
the client side, or at least TLSv1.0 when using the Python ssl module.

To help debug possible problems, these are the error messages you will see
in case there is a supported SSL version mismatch between the client and
the server:

• Using eGenix pyOpenSSL:

[Error] [('SSL routines', 'SSL23_GET_SERVER_HELLO',
'unsupported protocol')]

• Using Python ssl module:

[SSLError] [Errno 1] _ssl.c:493: error:1408F10B:SSL
routines:SSL3_GET_RECORD:wrong version number

2.1.6 Upgrading from 2.0 to 2.1

 Changes to user authentication

In mxODBC Connect, we changed the way passwords are stored in the
server's authorized-users.txt file in order to make password storage more
secure. The file now stores salted SHA-256 password hashes instead of the
MD5 hashes used in version 2.0 and earlier. As a result, version 2.0
authorized-users.txt files will no longer work with version 2.1.

If you are using the user authentication feature of mxODBC Connect,
please create a new authorized-users.txt file using the included password-
tool.

Please see section 2.4.5 Configuring User Authentication for details.

6

2. mxODBC Connect Server Installation

Note that using certificate access authentication is recommended over user
authentication using username and password. It is far more secure than the
application protocol level user authentication, since it is applied at the
network protocol level. Section 0 , for more details.

Configuring Certificate Based Authentication explains how this is setup.

 Update to the mxODBC 3.3 API

mxODBC Connect uses mxODBC 3.3 on the server and exposes almost all
new features on the client side as well. Please see please see section 3.1
Upgrading mxODBC Connect Client for details.

This should not require any changes on the server side, except perhaps a
possible update or use of the new connection_cursortype server
configuration parameter. Please see the section 2.1.7 Upgrading from 2.0.x
to 2.0.4 for details.

 ODBC Driver/Manager Compatibility Enhancements

 unixODBC

• mxODBC Connect Server is now built against unixODBC 2.3.2 on
Linux.

 DataDirect

• Updated the DataDirect binding to version 7.1.2 of the DataDirect
ODBC manager on Linux.

 Oracle

• Added work-around for Oracle Instant Client to be able to use integer
output parameters.

• Added a work-around for Oracle Instant Client to have it return output
parameters based on the input placeholder Python parameter types. It
would otherwise return all parameters as strings.

• Disabled a test for Oracle Instant Client which tries to set a pre-
connect connection option for timeouts, since the ODBC driver
segfaults with this option.

 MS SQL Server

• mxODBC Connect Server now defaults to 100ns

7

mxODBC Connect - Python Database Interface

connection.timestampresolution for MS SQL Server 2008 and later, and
1ms resolution for MS SQL server 2005 and earlier. This simplifies
interfacing to SQL Server timestamp columns by preventing occasional
precision errors.

• Tested mxODBC Connect Server successfully with new MS SQL Server
Native Client 11 for Linux. Unicode connection strings still don't work,
but everything else does.

• Added documentation on how to use Kerberos with mxODBC and SQL
Server for authentication on both Windows and Linux to the mxODBC
User Manual.

• Added note about problems of the FreeTDS ODBC driver dealing with
TIME and DATE columns to the to the mxODBC User Manual.

 Sybase ASE

• Added work-around for the Sybase ASE ODBC driver, which doesn't
always pass back NULL correctly to mxODBC Connect Server on 64-bit
Unix systems.

• Changed the variable type binding mode default for the Sybase ASE
ODBC driver from Python type binding to SQL type binding, which
resolves issues with e.g. the Unicode support for that driver.

• Added note about a segfault problem with the Sybase ASE 15.7 ODBC
driver which is caused by the driver corrupting the heap.

 IBM DB2

• Added work-around for the IBM DB2 ODBC driver, which doesn't
always pass back NULL correctly to mxODBC Connect Server on 64-bit
Unix systems.

 PostgreSQL

• Added work-around to force Python type binding for the PostgreSQL
ODBC drivers. More recent versions of the driver report supporting
SQL type binding, but they don't implement it.

• Added work-around to have PostgreSQL ODBC drivers properly work
with binary data for BYTEA columns.

 MySQL

• mxODBC Connect Server now supports native Unicode with the recent

8

2. mxODBC Connect Server Installation

MySQL ODBC drivers - provided you use the Unicode variants of the
drivers.

• Changed the default binding mode for MySQL ODBC drivers to Python
type binding. This works around a problem with date/time values when
talking to MySQL 5.6 servers.

2.1.7 Upgrading from 2.0.x to 2.0.4

 New connection_cursortype server configuration parameter

In version 2.0.4 of the mxODBC Connect Server, we have added a new
configuration setting to the [Connection] sections called
connection_cursortype.

This allows you to pre-configure the mxODBC connection.cursortype
to a fixed value without having to change the client side application.

 Enhance MS SQL Server and IBM DB2 Fetch Performance

With this new server side setting you can adjust the used ODBC cursor
type easily. Specifically for Microsoft SQL Server and IBM DB2 using
forward-only cursors instead of the default static cursors is strongly advised
- unless you have a need for static cursors. Please see the mxODBC User
Manual and Reference Guide for details on the various cursor types.

Here's an example of how to change your server side configuration to
benefit from the enhanced performance using forward-only cursors:

[Connection_Office]
 interface = 192.168.0.12
 netmask = 255.255.255.0

 # Use the faster forward-only cursors
 connection_cursortype = SQL.CURSOR_FORWARD_ONLY
With this setting, all client applications connecting to the given server
connection will automatically benefit from the faster forward-only cursors.

Please note that while forward-only cursors provide better performance,
they may also exhibit unwanted behaviour due to result sets not being
scrollable anymore.

9

mxODBC Connect - Python Database Interface

2.1.8 Upgrading from 1.0 to 2.0

 Windows Service Changes

If you have version 1.0 of the mxODBC Connect Server running on a
machine, please stop the server prior to upgrading. Not doing so can lead
to error messages during the installation of version 2.0, e.g. due to timing
and lock issues.

The version 2.0 installer will try to shutdown the 1.0 installation prior to
continuing with the installation, but since this is done asynchronously by
Windows, it is possible that the 1.0 server hasn't completely shut down in
time for the version 2.0 installer to proceed with the installation.

If you get error message like "service marked for deletion" during an
upgrade, please follow these steps:

1. manually uninstall the version 1.0 mxODBC Connect Server using
the Windows control panel,

2. restart the machine and then

3. proceed with the version 2.0 mxODBC Connect Server installation.

 Configuration File Changes

When upgrading from 1.0 to 2.0, you can leave the configuration files in
place. Version 2.0 of the server still knows about the 1.0 configuration
settings and will apply them in the same way.

Unlike version 1.0, version 2.0 is now using a single port to implement SSL
and plain-text communication. As a result, the configuration setting
using_ssl was replaced with require_ssl and allow_ssl. This offers
more flexibility in the setup.

You can still use a two port configuration, if you like, but the default port no
longer switches from 6632 to 6633 in case you enable SSL in the
connection section.

 Security Related Changes

mxODBC Connect Server 2.0 uses SHA1 digest values instead of MD5
digest values. This change will increase security of the client certificate
checks.

10

2. mxODBC Connect Server Installation

Affected are the server configuration options
client_certificate_digest and client_certificate_digest_file.
Both now require SHA1 HEX digests instead of MD5 HEX digests as was
needed for mxODBC Connect Server 1.0.

 Network Related Changes

For the version 2.0 of the server, we have registered the port 6632 used by
mxODBC Connect with IANA (as mxodbc-connect service).

Since assigned ports are a rare resource, port 6633 is no longer used by the
server per default. However, you can still configure the server to use this
port, if needed.

Port 6632 can now be used for both SSL and plain-text communication. It is
even possible to have a mixed setup where some clients use plain-text and
others use SSL communication over that port.

 mxODBC Feature Changes

mxODBC Connect Server uses the new mxODBC 3.2 version on the server
side, which provide better compatibility with current ODBC drivers and
also include a number of new features compared to the older mxODBC 3.0
version included in mxODBC Connect Server 1.0.

Please see the mxODBC User Manual and Reference Guide for details on
the mxODBC ODBC driver support enhancements.

2.2 mxODBC Connect Server Installation
on Windows

The mxODBC Connect Server installer for Windows includes support for
the Microsoft ODBC Manager, so you can use all available Windows system
tools to configure your ODBC data sources.

2.2.1 Prerequisites

• You will need ODBC drivers for all database servers you wish to
connect to. Windows comes with a very complete set of such
drivers and most database vendors also provide Windows ODBC

11

http://msdn.microsoft.com/en-us/library/ms714024.aspx

mxODBC Connect - Python Database Interface

drivers for their databases, but if you can't find the driver you are
looking for have a look at section 8 Hints & Links to other
Resources.

• Configure all your databases in Microsoft ODBC Manager as
System Data Sources. System Data Sources are preferred, since
any local user can access them. Note that the mxODBC Connect
Server runs as the local system user by default, not as the
administrative user you used for installation.

• On 64-bit Windows systems, please make sure that you are
configuring the right ODBC manager variant for the version of
mxODBC Connect you have installed. Windows provides the
ODBC manager as 32-bit version and 64-bit version, each with a
separate list of data sources. If you install the 64-bit version of
mxODBC Connect, the default ODBC manager from the
C:\Windows\System32\ directory should be used. If you are using
the 32-bit version of mxODBC Connect on Windows x64, please
use the 32-bit version instead. You can usually find it in the
C:\Windows\SysWOW64\ directory. After installation of the
mxODBC Connect Server, you will find an entry "Start the ODBC
Manager" in its start menu which will point to the right manager for
your installation.

• Please make sure that all your data sources are accessible. This can
be tested in the Microsoft ODBC Manager at the end of the DSN
configuration wizard.

• The mxODBC Connect Server does not require any version of
Python to be installed, since it comes with it's own Python runtime
and the required set of libraries. The server will not interfere or
depend on any existing Python installation on your server.

• You may need administrator privileges on Windows XP/2003 and
later to successfully complete the installation or un-installation
process.

2.2.2 Procedure

Note:
Please run the installer/uninstaller as administrator on Windows XP/2003
and later.

Please uninstall any existing version of mxODBC Connect Server, if you
have a previous version installed (see section 2.2.3 for details).

12

http://msdn.microsoft.com/en-us/library/ms714024.aspx
http://msdn.microsoft.com/en-us/library/ms714024.aspx

2. mxODBC Connect Server Installation

After you have downloaded the Windows installer of the
egenix-mxodbc-connect-server distribution, double-click on the
executable to start the installation process. Depending on your OS version,
you may need to click through a user account control (UAC) security dialog
to proceed. Then follow the instructions of the installer.

If you run into a problem during the installation process, please consult
section 7. Troubleshooting.

Note:
You have to provide a valid mxODBC Connect Server license to use the
service. It's possible to install without a valid license file, but the service
won't start.

 Step-by-step Installation

The following screenshots demonstrate a typical installation. Please note
that the screens may look different depending on your version of the
installer and OS.

After you double click on the installer, the installation wizard starts up:

Clicking "Next" will take you to the next screen. "Cancel" aborts this
installation process.

First you have to accept the license agreement:

13

mxODBC Connect - Python Database Interface

Next, you have to select the location where the server should be installed
on your local disk drive. In most cases, you can simply accept the default
value. If the folder does not exist, the installer will ask you whether it
should create it.

The server will also install a startup menu which provides access to the
documentation, the uninstaller and a few utilities:

14

2. mxODBC Connect Server Installation

The installer is now ready to install the server. Please check the settings and
then click on "Install".

During the installation process, the installer will create example server and
client SSL certificates that you can use to setup the server to accept SSL
encrypted connections. See section 2.4 mxODBC Connect Server
Configuration for more details.

The installer will also ask you for the mxodbc_connect_server_license.py
file that you should have obtained from eGenix.com by email when signing

15

mxODBC Connect - Python Database Interface

up for an evaluation or after purchase of an mxODBC Connect Server
license.

If you haven't yet downloaded and unzipped the license archive that was
attached to the eGenix email, please do so now and point the installer to
the location where you extracted the mxodbc_connect_server_license.py
and mxodbc_connect_server_license.txt file for your installation.

Note that the installer will just ask for the
mxodbc_connect_server_license.py file and expect the
mxodbc_connect_server_license.txt to be in the same directory.

After installation of the server and license files, a read-me style notice will
be displayed with a few helpful tips that you should read carefully:

16

2. mxODBC Connect Server Installation

As last step, the installer will ask you whether it should automatically start
the eGenix mxODBC Connect Server and the associated tray icon. If you
choose not to start the server and/or tray icon application, you can always
go back to the start menu to start them manually.

Click "Finish" to exit the installer.

17

mxODBC Connect - Python Database Interface

 Server Tray Icon

If you have enabled both checkboxes in the final dialog of the installation
wizard, you should now see a small red icon in your system tray bar.

This icon indicates whether the eGenix.com mxODBC Connect Server is
running (red arrow and icon) or not (grey cross and icon).

A right-click on the icon will open a menu that allows you to easily start,
stop and restart the server. There are also shortcuts to open the
configuration file, configure user access, check the server log file and open
the documentation.

 Configuring the Firewall

The installer registers a service named mxODBC-Connect-Server. This will
listen on TCP port localhost:6632 by default, i.e. the server will only accept
connections from the local machine on port 6632.

TCP port 6632 is used for both plain and secure (SSL) connections. It's a
IANA registered service port for eGenix mxODBC Connect with name
mxodbc-connect.

You may have to configure your firewall to allow connections on port
6632 if you want to permit connections from a local subnet.

 Edit the Configuration

After installation, you must edit the configuration file of the mxODBC
Connect Server to fit your needs, e.g. have it listen for connections from the
local subnet, and then restart the service in order for the changes to take
effect. See section 2.4 mxODBC Connect Server Configuration for details
on how this is done.

 Controlling Automatic Startup of the Server

The mxODBC Connect Server service will be started automatically on each
system startup by default. The startup type can be changed in the Control
Panel / Administrative Tools / Services Windows panel or an similar
configuration tool after installation.

 Troubleshooting

If the mxODBC Connect Server service fails to start, please have a look at
the server log file and consult section 7. Troubleshooting. The server log file
is available via the tray icon menu entry Show Log File.

18

2. mxODBC Connect Server Installation

If you still have problems, please contact eGenix.com Support:
support@egenix.com.

2.2.3 Uninstall

The Windows installer will automatically register the installed software with
the standard Windows Software Setup tool.

To uninstall the server, run the Windows Software Setup tool and select the
"eGenix.com mxODBC Connect Server x.x.x" entry for uninstallation.

This will stop and unregister the server service, then uninstall all files that
can be safely removed from the system. It will not remove the configuration
files, log and certificate files by default. You are asked whether to remove
those as well at the end of the uninstallation process.

We suggest to backup your configuration directory before removing it.

2.2.4 Reinstallation or upgrading

You can reinstall or upgrade the mxODBC Connect Server by simply
uninstalling it, without removing its configuration directory and then
proceeding with the installation of the upgrade.

Note:
After upgrading, please check your server configuration file server-
config.ini and compare it to the new default configuration file which will
have been installed as server-config.ini.original.

It is also a good idea to review your changes of the server configuration
against the new mxODBC Connect User Manual.

2.3 mxODBC Connect Server Installation
on Unix

On Linux, mxODBC Connect Server is installed using a command line
installer. The installer includes support for iODBC and unixODBC ODBC
managers, one of which is usually preinstalled on Linux systems.

19

mailto:support@egenix.com

mxODBC Connect - Python Database Interface

You can use the available GUI-configuration helpers for these ODBC
managers to configure your ODBC data sources, which then become
available to the mxODBC Connect Server and can be used by all
applications connecting to the server using the mxODBC Connect Client.

2.3.1 Prerequisites

• You need root access to the target machine.

• Please make sure that you have a working unixODBC, iODBC or
DataDirect ODBC manager installation prior to continuing with the
installation. For details, please see the mxODBC User Manual and
Reference Guide. In particular, the mxODBC Connect Server
process needs to be able to access the ODBC manager
configuration files, libraries and any ODBC drivers and driver
specific files you may want to use with mxODBC Connect.

• You will need Unix ODBC drivers for all databases you wish to
connect to. If you can't find the driver you are looking for have a
look at section 8 Hints & Links to other Resources.

2.3.2 Procedure

Please download the binary distribution of mxODBC Connect Server for
your version of the installed OS.

Extract the binary distribution (use the name of the file you downloaded):

tar -xf egenix-mxodbc-connect-server-x.x.x-linux-i686.tar.gz

Enter into the subdirectory created by tar and then execute the installer
script:

./install

Then follow the instructions of the installer script in order to install the
server.

If you run into a problem during the installation process, please consult
section 7. Troubleshooting.

20

2. mxODBC Connect Server Installation

Note:
You have to uninstall any old version of the mxODBC Connect Server
prior to installing a new version. The installer will ask you to do so and
assist in uninstalling your old server.

 Step-by-step Installation

The following is a transcript of a typical installation session:
$./install

===
Welcome to the eGenix mxODBC Connect Server 1.0.0 installer/uninstaller !

The eGenix mxODBC Connect Server product requires that
you set up an account that can print be used by the server.

Please enter the account name. Both a group and user with
the given account name will be created, if they don't already
exist in the system.

If you have an existing installation of eGenix mxODBC Connect Server,
please enter the account name used by that installation.

Account name [mxodbc] :

The server is run under the given user account and group. Both are created
by the installer automatically.

Where should the eGenix mxODBC Connect Server be installed on the system ?

[/opt/eGenix/mxODBC-Connect-Server] :

The directory /opt/eGenix/mxODBC-Connect-Server does not exist.

Create it ? (yes/no) [yes]

The default location of the server is under the /opt directory. You can
change this directory to a different one, but care must be taken to make
sure that the user account's home directory is set to the same directory.

Creating group 'mxodbc'...

Creating user account 'mxodbc'...

Please extract the license archive you received from eGenix and enter
the pathname of the directory containing your license files
(license.py and license.txt).

[/opt/eGenix/mxODBC-Connect-Server] :

*** Could not find the license.py file in that directory. Please retry.

The license files have to be unzipped in the newly created server directory.
If the installer cannot find the files, it continues asking for a new directory
until it succeeds.

[/opt/eGenix/mxODBC-Connect-Server] :

21

mxODBC Connect - Python Database Interface

Installing application files...

Setting up file permissions...

Creating initial example certificates...

The installer will create a set of server and client certificates that can be
used to setup SSL connections. You can replace these later on with your
own certificates if needed.

The eGenix mxODBC Connect Server product comes with an init
script that can be used to automatically start the server
when the system starts up.

Install and enable the init script ? (yes/no) [yes]

Installing init.d script mxodbc-connect-server...

The init script provides a convenient way of starting/stopping the server.
The installer will try to register the script with the system, but this may not
always work due to the many ways of how Unix systems expect this to be
done.

===
eGenix mxODBC Connect Server 1.0.0 was successfully installed.

Please edit and update the configuration file:

 /opt/eGenix/mxODBC-Connect-Server/server-config.ini

and start the server using:

 /etc/init.d/mxodbc-connect-server start

You can now start the server for the first time and check the
~mxodbc/server.log file for successful startup.

 Server User Account and Group

mxODBC Connect Server runs as it's own mxodbc user for security reasons
and stores all of it's configuration and log files under the home directory of
this user.

The user account and directories are created automatically during the
installation process.

 Configuring the Firewall

The installer registers a daemon named mxodbc-connect-serve. This will
listen on TCP port localhost:6632 by default, ie. the server will only accept
connections from the local machine on port 6632.

22

2. mxODBC Connect Server Installation

TCP port 6632 is used for both plain and secure (SSL) connections. It's a
IANA registered service port for eGenix mxODBC Connect with name
mxodbc-connect.

You may have to configure your firewall to allow connections on this port if
you want to permit connections from a local subnet.

 Edit the Configuration

After installation, you must edit the configuration file of the mxODBC
Connect Server to fit your needs, e.g. have it listen for connections from the
local subnet, and then restart the service in order for the changes to take
effect. See section 2.4 mxODBC Connect Server Configuration for details
on how this is done.

 Starting/Stopping the Server

The installer will ask you to start the server at the end of the installation.

This can easily be done using the provided init.d script (if you chose to
install it):

/etc/init.d/mxodbc-connect start
/etc/init.d/mxodbc-connect restart
/etc/init.d/mxodbc-connect stop

or by running the server as mxodbc user directly:

sudo -u mxodbc ~/bin/mxodbc-connect-server start
sudo -u mxodbc ~/bin/mxodbc-connect-server restart
sudo -u mxodbc ~/bin/mxodbc-connect-server stop

 Controlling Automatic Startup of the Server

The installer will attempt to register the mxodbc-connect-server daemon
and add the appropriate init.d script to your system.

This may not always work due to the many different ways Unix derivatives
implement the system startup process.

Please test the automatic server startup after reboot, prior to installing the
server on a production machine.

 Troubleshooting

If the mxODBC Connect Server service fails to start, please have a look at
the server log file and consult section 7. Troubleshooting. The server log file
is available in the home directory of the mxodbc user as server.log file.

23

mxODBC Connect - Python Database Interface

If you still have problems, please contact eGenix.com Support:
support@egenix.com.

2.3.3 Uninstallation

To uninstall the mxODBC Connect Server, run the uninstall script from
your binary distribution or the server's application directory:

./uninstall

This will guide you through the uninstall process. The uninstaller will ask
you whether you would like to keep the configuration files.

If you answer yes, only the product files that can be safely removed from
the system will be uninstalled.

If you answer no, the complete installation will be removed - including any
configuration files and/or certificates, the mxodbc user account and group.

Note:
The complete removal mode will also delete any customizations you have
applied to the server configuration, so be sure to backup your
configuration files and certificates before uninstalling, if you intend to
reinstall the server in the future.

2.3.4 Reinstallation or upgrading

Running the ./install script from the newly downloaded installer will
reinstall or upgrade the server. The installer will automatically take care of
uninstalling old components and replace them with updated versions.

Note:
After upgrading, please check your server configuration file server-
config.ini and compare it to the new default configuration file which will
have been installed as server-config.ini.original.

It is also a good idea to review your changes of the server configuration
against the new mxODBC Connect User Manual.

24

mailto:support@egenix.com

2. mxODBC Connect Server Installation

2.4 mxODBC Connect Server Configuration

The server configuration INI file is named server-config.ini and located in
the configuration directory of the mxODBC Connect Server. It's location
depends on the operating system:

• Windows:
Located in your documents and settings folder (may be called
differently on non-English Windows versions), in the
All Users\Application Data\eGenix.com\mxODBC Connect Server
folder.

• Linux:
Located in ~mxodbc, i.e. the home directory of the mxodbc user
that was created during the installation process.

Please make sure the server daemon has read access to all of its
configuration files. It also needs write permission for its home directory in
order to create and append to the log file. Note that the name and location
of the log file can be configured.

The installer will configure the access rights for you. You only need to take
special care when relocating the server installation or otherwise modifying
its setup.

2.4.1 mxODBC Connect Configuration File Syntax

The mxODBC Connection configuration files use an INI-file like syntax:

global_option = 2

[Section1]
option_a = 1
option_b = abc.html
option_c = text with spaces

[Section2]
option_a = 2
option_b = 3
option_c = a string

The INI-file structure is the same for all supported platforms, both on the
server and the client side.

You can use Unix or Windows line endings and the forward slash ("/") as
path separator on both systems, but it's recommended to use the backslash
("\") on Windows.

25

mxODBC Connect - Python Database Interface

The INI files are parsed using the following rules:

• Entries in square brackets indicate new subsections.

• Global variables may be set prior to starting any subsection.

• Empty lines and lines starting with '#' or ';' (comments) are ignored.

• Indentation is not necessary. Lines can start at any column.

• Entries may span multiple lines by using '\' continuations at the line
ends. The lines are stripped of any white space before removing
the trailing '\' and concatenating them. Comment lines are removed
as well.

Example:

[Continuation]
a = first line\
 second line

Some additional notes regarding the INI-file format used by mxODBC
Connect:

• Comments may be used in the INI-file, but only on separate lines,
i.e. a comment after a value is not permitted and will likely cause
problems when parsing the option value.

• All pathnames in the configuration file are relative to the directory
of the configuration file. You can use absolute pathnames to point
any file in the file system.

2.4.2 mxODBC Connect Server Configuration File

The configuration file uses a standard INI-file format (see section 2.4.1 on
page 25) and has the following sections and options with their default
values (some are OS dependant).

Most settings have default values, so you only need to provide those
settings which you intend to change from their default.

All file names defined in the server configuration file are interpreted as
relative to the server configuration file. If you intend to change these file
names to locations outside the normal server installation or configuration

26

2. mxODBC Connect Server Installation

directory, please make sure that the server has permission to access these
files and/or directories.

 [Connection_Name]

These named sections each define a network connection to be opened and
managed by the server.

You can add more sections with different names to define multiple
connections of your server. The only requirement is that the section names
contain the term "Connection" or "connection".

Please use distinctive section names such as Connection_Local,
RemoteConnection or CompanyVPNConnection to prevent future collision
with predefined section names.

All connection sections have the following common attributes:

interface = 127.0.0.1

IP address of the network interface to listen on.

127.0.0.1 will only allow connections from the local host.

netmask = 255.0.0.0

Netmask of the interface.

You should adjust this setting to the layout of the subnet. The server will
only allow connections from the subnet defined by the interface IP
address and netmask.

Note:
IP based access control is not considered as a real security feature. You
need an SSL connection, precise rules for database access and difficult
to guess passwords to secure your database server.

port = 6632

Port number to listen on.

Default port number is 6632 (IANA name mxodbc-connect) which is
used for both plain and secure (SSL) connections and is a IANA
registered port for eGenix mxODBC Connect.

You are free to use any free port number, as long as you follow the
convention that unprivileged users and non-standardized services need
to use port numbers above 1024. However, any change you make on
the server side will also have to be reflected on the client side.

27

mxODBC Connect - Python Database Interface

Note:
Using obscure port numbers will not increase your security, since a
simple port scanner utility can reveal your port number.

 Advanced Options

You typically do not need to modify the following options. Not specifying
them will have the server use the given default values.

allow_reuse_address = 1

Enables the SO_REUSEADDR socket option.

This socket option tells the kernel to use the port even if it is currently
busy in the TIME_WAIT state. If the port is busy, but with another state,
you will still get an "address already in use" error.

This option is useful when restarting the server daemon.

keepalive = 1

Enables SO_KEEPALIVE socket option, which ensures that client
connections will not be dropped due to long inactivity.

It is recommended to keep this option enabled.

request_queue_size = 10

The TCP request queue size.

Maximum number of client connections that can wait to be accepted.
Increase only if you expect a large number of connection attempts per
second.

socket_timeout = None

TCP socket timeout in seconds or None for disabling connection
timeout.

This is the length of inactivity period after the TCP connection should be
dropped.

You should not need to modify this option. Use [Activity]
max_waiting_time instead.

 Options for SSL Encrypted Connections

The following options below are only relevant, if SSL is to be used on the
connection.

28

2. mxODBC Connect Server Installation

allow_ssl = 0

Setting allow_ssl to a non-zero value enables the secure socket layer
(SSL) support on this connection.

You can use SSL to encrypt all communication and also to authenticate
clients via certificate verification.

Note that the server can handle both plain text and SSL connections on
the same port, if allow_ssl is set to a non-zero value. If you want to
disable plain text connections, set require_ssl to a non-zero value
instead.

Default is to only accept plain text connections (allow_ssl = 0).

require_ssl = 0

Setting require_ssl to a non-zero value disables plain text connections
on this connection. The client has to start a SSL connection if it wants to
communicate with the server.

If the require_ssl setting is enabled, allow_ssl is enabled implicitly,
i.e. set to a true value.

Default is to accept both plain text and SSL encrypted connections, if
allow_ssl is enabled.

server_private_key_file = server.pkey

Name of the server's SSL private key file.

This option is required for all SSL connections. The installer provides a
default, self-signed key pair. You can replace it with your own PEM-
encoded private key file .

Be sure to check the file permissions on the private key. It should be
readable by the service user only.

server_certificate_file = server.cert

Name of the server's SSL certificate file.

This option is required for all SSL connections. The installer provides a
default, self-signed key pair. You can replace it with your own PEM-
encoded certificate file .

client_certificate_file = has no default value

Name of the file that contains concatenated certificates for client
certificate verification.

client_certificate_dir = has no default value

Name of a directory that contains files with single certificates for client
certificate verification.

29

mxODBC Connect - Python Database Interface

client_certificate_digest = has no default value

Space separated list of SHA1 digest values of accepted client certificates.

It's recommended to use client_certificate_digest_file if you
have many digest values to prevent cluttering up the configuration file
and allow sharing of digest list between connections.

client_certificate_digest_file = has no default value

Name of a file that contains SHA1 certificate digests for client certificate
verification.

The file can contain more than one digest value, one per line.

 Client Certificate Access Rules

A client may connect, only if at least one of the above client certificate
verification rules matches the certificate presented by the client.

If none of the verification options are defined then all clients are accepted,
regardless the content of their client certificates. The server log file lists the
SHA1 digest values of all accepted certificates on each server start. It also
logs the SHA1 digests of all client certificates it accepts, if one of the
verification options is enabled.

 Connection Default Configuration

To simplify adjusting the mxODBC connection default format/parameter
values without having to change the applications using the mxODBC
Connect Client, the mxODBC Connect Server provides the following
configuration settings.

These connection settings are applied to the mxODBC connection directly
on the server side and right after a connection is opened.

connection_cursottype = None

Defines the connection.cursortype to set after opening the
connection on the server side.

The cursor type defines how the database handles result sets opened
with the cursor. For more information, please check the documentation
of your ODBC driver and the mxODBC manual.

The server configuration provides a special object called SQL to make
configuration of this setting easier.

Possible values are:

• SQL.CURSOR_FORWARD_ONLY - cursor can only scroll/move
forward; this is the fastest cursor type variant, but does not

30

2. mxODBC Connect Server Installation

make any guarantees with respect to result set membership or
order

• SQL.CURSOR_KEYSET_DRIVEN - result set keys are stored, so
the result set membership and order does not change; changes
to the result set row values are possible

• SQL.CURSOR_DYNAMIC - result sets are dynamically updated
with changes from other users; membership and order can
change while processing the result set

• SQL.CURSOR_STATIC - result set does not change after opening
the cursor; membership and order or the rows are maintained
while processing the result set

• None - the default value for .cursortype as identified by
mxODBC is used. Please see the mxODBC manual and your
ODBC driver documentation for details on how mxODBC sets
up the cursors per default. This is the default value for the
connection_cursortype setting.

Please note that not all databases support all of the above cursor types.
Only the SQL.CURSOR_FORWARD_ONLY type is supported by all
databases.

 [Authentication]

The mxODBC Connect Server can be protected against unauthorized
access using different authentication mechanisms. This section configures
how authentication is handled by the server.

Note that these authentication checks are not very secure. It is generally
better to use SSL connections only and implement access control via client
certificate checking than relying just on authentication using a username
and a password.

auth_mode = none

Authentication mode to use.

Possible values:

• none - no authentication

• file - password file based authentication.

password_file = authorized-users.txt

If auth_mode is set to 'file', password_file must point to a text file
defining the users that are allowed to access the mxODBC Connect
Server.

31

mxODBC Connect - Python Database Interface

The file format of the password file uses one line entries of the form
"user: sha-256-hex-digest$salt$version" for each user. Empty lines and
lines starting with '#' or ';' are ignored. The hash values must be
generated using the password-tool included with the server distribution.

Please see section 2.4.5 Configuring User Authentication for details.

The file should only be readable by the mxODBC Connect Server
daemon.

login_salt = <internal default>

In order to provide some extra protection when sending the login
request over the network, client and server can be configured to add a
salt string to the hashed login credentials.

Only set this, if you want to override the internal default or need to
separate multiple mxODBC Connect installations from each other.

The salt string should have at least 16 bytes and should not contain
spaces. If given, the server setting for this variable must match those of
the clients that want to connect to the server. The login_salt can be
thought of as shared secret.

 [Session]

This section controls the details of the communication between the server
and clients. Each client will normally open one session to the server. A
session can host multiple physical database connections.

max_sessions = 400

Maximum number of concurrent sessions allowed by the server.

This parameter is intended to prevent Denial of Service (DOS) attacks
on the server. You can also use it for debugging purposes or to reduce
the load on the server. Clients will get a connection error in case the
server has reached the maximum number of concurrent sessions.

Note that this is not the same as the number of concurrent database
connections. Those are limited by the server license you have installed.

enable_compression = 1

Network communication compression.

Setting this variable to 1 will enable compression of TCP packets sent by
the server, setting the variable to 0 causes compression to be disabled.

Compression is enabled per default, in order to reduce network traffic
and enhance roundtrip times.

32

2. mxODBC Connect Server Installation

On very fast networks or local connections you may want to disable
compression for enhanced performance. We have found that even on
Gigabit Ethernet networks, enabling compression does provide a
performance increase.

compression_ratio = 2

Compression ratio to use for network communication compression.

Valid values are 1 (least compression, fast) - 9 (best compression, slow).

The default value of 2 is a good compromise for fast networks.

You may want to experiment with the setting to tune it for best
performance on your network.

In some setups, e.g. fast server and slow clients, it may be wise to use
different compression ratios for clients and servers. The server setting
affects packets sent from the server to the client, whereas the client
setting affects packets sent from the client to the server.

max_chunk_length = 64000

Maximum chunk length for TCP read/write operations.

This value should allow fairly fast transfers. You normally don't need to
modify it, unless the server or client platform have specific requirements
with respect to TCP packet sizes.

receive_timeout = 10

Timeout for one TCP receive operation in seconds.

You will normally not need to change this value.

send_timeout = 10

Timeout for one TCP send operation in seconds.

You will normally not need to change this value.

allow_clients = ''

Space separated list of client IP addresses allowed to connect. The
format is network IP/netmask bits, e.g. '192.168.0.0/24 10.10.10.0/24'.

This defaults to the union of all the networks the server listens on as
defined by the connection sections and is normally not set.

It may be used to allow clients from additional subnets to connect,
which are not directly connected to the subnets the server listens on.

33

mxODBC Connect - Python Database Interface

If given, the setting overrides this default, so care must be taken to
update the list when making changes to the connection sections.

To simplify the definition of the network listing, we have added
shortcuts which are replaced with the corresponding network
definitions at server start time. These are:

all

Replaced with 0.0.0.0/0 and results in allowing requests from any
client IP address.

localhost

Replaced with 127.0.0.1. Results in allowing client requests from the
server itself.

connections

Replaced with the list of networks configured as connections to be
used by the server. This setting is also used when allow_clients is set
to an empty string. It is useful, if you only want to add extra client
networks, without disallowing the local networks on which the
server is configured to listen.

Use of these shortcuts is easy. Simply add them to the allow_clients
string value, e.g. allow_clients = 'connections 10.10.10.1/24'
or allow_clients = 'all'.

 [Unix]

This section is only used on Unix systems, such as Linux and FreeBSD.

pid_file = server.pid

Name of the PID file to store the server's PID.

 [Windows]

This section is only used on Windows and currently does not have any
options.

 [Activity]

This section defines settings which affect the way it handles timeouts and
administrative tasks.

check_interval = 2

The time period in seconds of checking server threads for finished
threads and errors. This is required to clean up internal data structures.

34

2. mxODBC Connect Server Installation

max_request_execution_time = 86400

Maximum time allowed to execute a client request in seconds. This
should be twice the time required to complete your longest SQL query.
It is used to detect timeout conditions and needed to free resources.

max_session_reconnect_time = 60

Maximum amount of time in seconds a working thread in the server will
wait for a session reconnect after a communication failure.

This is intended to allow intermittent communication failures not to
cause an immediate disruption of the session based communication
between client and server, while at the same time, preventing the server
from holding on to resources such as database connection for longer
periods of time after a communication failure.

max_waiting_time = 86400

Maximum amount of time in seconds a working thread in the server
waits for a command from a client. After this time the session will be
dropped and the client must reconnect.

The client can prevent the timeout by executing dummy like operations,
such as a query that doesn't return any values (e.g. "SELECT 0 WHERE
1=0"). The client could then also catch any connection related
exceptions and reconnect as necessary.

 [Logging]

This section defines the details of logging output.

log_level = mx.Log.SYSTEM_IMPORTANT

Log level. Please see mxLog for details.

Commonly used log levels (ordered from only logging serious problems
to logging everything):

• mx.Log.SYSTEM_ERROR - log error messages (but no less
important ones)

• mx.Log.SYSTEM_IMPORTANT - log important messages (but no
less important ones)

• mx.Log.SYSTEM_WARNING - log warning messages (but no less
important ones)

• mx.Log.SYSTEM_MESSAGE - log operational messages (but no
less important ones)

• mx.Log.SYSTEM_INFO - log informational messages (but no
less important ones)

35

mxODBC Connect - Python Database Interface

• mx.Log.SYSTEM_ANY - log all messages

The server configuration system provides access to the mx.Log module
for the purpose of defining these values.

log_file = server.log

Name of the log file to use. Please ensure, that the server can create the
log file and append to existing one. Failing to do so will kill the server
with access denied exception.

2.4.3 Server Connection Setup

In order to accept connections from the network, you will have to
customize the server configuration to your needs. This section explains
how connections are setup.

The mxODBC Connect Server supports listening on multiple ports and
interfaces. Each connection configuration needs to be placed into its own
section of the configuration file. The server detects the connection sections
by looking at the section title. All sections that start with "Connection" are
interpreted as connection configuration sections.

 Basic configuration

This is a basic configuration which listens on subnet 129.168.0.12/24 for
plain text (unencrypted) connections:

[Connection_Office]
 interface = 192.168.0.12
 netmask = 255.255.255.0

This connection will not accept SSL-encrypted connections and also reject
any connections from other subnets.

 Adding SSL support is easy

The server installation will create two certificate files for you: server.pkey
(the private key file) and server.cert (the public key certificate file). You can
use these generated files as initial setup and later on replace them with
your own public key certificate files, if you wish.

36

2. mxODBC Connect Server Installation

Be sure to double check the file permissions on the private key files. They
should be readable by the service user only.

Since the above two file names are used per default, enabling SSL
connections on the server port is done by simply adding allow_ssl = 1 to
the connection configuration:

[Connection_Office]
 interface = 192.168.0.12
 netmask = 255.255.255.0
 allow_ssl = 1
If you are using custom certificates, you can also point the server to those
files:

[Connection_Office]
 interface = 192.168.0.12
 netmask = 255.255.255.0
 allow_ssl = 1

server_private_key_file = my-private-key-file.pkey
 server_certificate_file = my-public-key-file.cert

Note that using allow_ssl = 1 will not force clients to connect using
SSL. Plain-text connections are still possible as well. Please see the next
section on how to disable plain-text connections altogether.

 Even more secure: SSL-only connections

The communication can also be restricted to SSL-only. This effectively
disables plain text connections on the server port. All you have to do, is add
the require_ssl = 1 line to the configuration:

[Connection_Office]
 interface = 192.168.0.12
 netmask = 255.255.255.0
 require_ssl = 1

 Listening on more than one port

If you have special setup requirements where you want to use more than
one port, e.g. one for plain text connections and one for SSL-only
connections, you can define more than one connection section in the
configuration file:

[Connection_Office]
 interface = 192.168.0.12
 netmask = 255.255.255.0
 port = 6632

[Connection_Office_SSL]
 interface = 192.168.0.12
 netmask = 255.255.255.0
 port = 6633
 require_ssl = 1

The above setup emulates the setup which was used by mxODBC Connect
1.0, where two ports were used for the communication, one for plain-text,

37

mxODBC Connect - Python Database Interface

the other for SSL connections. With mxODBC Connect 2.0 and later, this is
no longer necessary, since the server can now switch between plain-text
and SSL as necessary.

 Allowing connections from other networks

The mxODBC Connect Server defaults to only allowing connections from
clients on the configured connection networks.

When a client on a different subnet tries to connect to the server, the
connection fails and the server.log file shows an error such as:

SessionManager: Client is not allowed to connect from
10.10.10.10:57086

In some cases, you may want to also allow clients on different networks
which are not directly connected to the server networks to connect. This
can be achieved by overriding the server default of using the union of all
configured connection networks as list of allowed client IP addresses.

You have to enable the entry allow_clients in the [Session] section of the
server-config.ini file, e.g. in the above case, you'd explicitly add the
10.10.10.0/24 network to the list of allowed clients:

[Connection_Server_LAN]
interface = 192.168.0.1
netmask = 255.255.255.0

[Session]
Allow clients from the server LAN and the VPN
allow_clients = 192.168.0.0/24 10.10.10.0/24

Since the setting overrides the server default, special care has to be taken
to keep the network definitions in the connection sections and the
allow_clients variable in sync.

In order to avoid accidentally removing local networks from the allowed
clients list, you can use the shortcut connections, which is replaced with
the list of configured connections on which the server listens, e.g.

[Session]
Allow clients from the configured connections and the VPN
allow_clients = connections 10.10.10.0/24

Please see the documentation for allow_clients in the server-config.ini
section [Session], explained in 2.4.2 mxODBC Connect Server
Configuration File, for more details.

38

2. mxODBC Connect Server Installation

2.4.4 Configuring Certificate Based Authentication

The mxODBC Connect Server can perform certificate based authentication
checks when a client connects to it via SSL. For this to work, the connection
needs to be configured to require SSL, e.g.

[Connection_SSL]
 interface = 192.168.0.12
 netmask = 255.255.255.0
 require_ssl = 1

The server provides these ways of securing SSL connections:

• providing a file which contains all allowed client certificates

• placing the allowed client certificate files into a directory

• providing a list of allowed client certificate SHA1 hex digests in the
server configuration file

• providing a list of allowed client certificate SHA1 hex digests in a
separate file

Important: All options are read and processed at server startup time, so
any change will only take affect after a server restart.

 Using a file with client certificates

With this option, the incoming client certificates are checked against a file
which contains the allowed client certificates concatenated in PEM format2.

To enable this client certificate check, please add the client certificates to a
file on the server and then add the path to this file to the configuration file,
e.g.

Name of the file that contains concatenated certificates for
client certificate verification.
client_certificate_file = allowed_client_certificate.cert

The path may be given relative to the server configuration file's directory.

 Using a directory with client certificates

With this option, the incoming client certificates are checked against a
directory listing the allowed client certificates in PEM file format. The files
have to use the extension ".cert" to be included in the search.

2 PEM format is a special text file format, which can easily be edited using a text
editor.

39

mxODBC Connect - Python Database Interface

To enable this client certificate check, please add the client certificates to a
directory on the server and then add the path to this directory to the
configuration file, e.g.

Name of a directory that contains files with single certificates
for client certificate verification
client_certificate_dir = allowed_client_certificates/

The directory may be given relative to the server configuration file's
directory.

 Using a list of SHA1 hex digests in the configuration file

With this option, the incoming client certificates are checked against a list
of allowed SHA1 certificate digests.

On Unix and provided you have OpenSSL installed, you can determine the
SHA1 certificate digest by running the following command against the
client certificate:

> openssl x509 -fingerprint -in client.cert
SHA1 Fingerprint=
88:EA:FA:AD:1C:CB:2D:34:9B:07:6D:2B:5C:0C:22:23:9F:F5:03:32

On Windows, you can rename the client.cert file to client.crt and then use
the Windows Explorer certificate helper to open the certificate. The details
section will show the SHA1 hex digest.

To enable this client certificate check, please add the SHA1 digests in hex
format to the configuration file as space separated entry, e.g.

Space separated list of SHA1 digest values of accepted client
certificates
client_certificate_digest = \
 0C5BD019D9A5C2D4279CC3E4E340E17F \
 0C5BD019D9A5C2D4279cc3E4e340e180 \
 0C5BD019D9A5C2D4279CC3E4E340E181

You can use the backslash (" \") at the end of a line to split the setting across
multiple lines. Please remove any embedded spaces, colons or dashes from
the hex digests before adding them.

 Using a file with SHA1 digests

With this option, the incoming client certificates are also checked against a
list of allowed SHA1 certificate digests. In this case, the digest values are
read from a file.

Please see the above section for how to extract the SHA1 digest from the
client certificates.

40

2. mxODBC Connect Server Installation

To enable this client certificate check, please add the SHA1 digests in hex
format to a file and then add the path to this file to the configuration file,
e.g.

Name of a file that contains SHA1 certificate digests for client
certificate verification
client_certificate_digest_file = allowed_clients.sha1

The file allowed_clients.sha1must contain one SHA1 hex digest per line.
Comment lines starting with '#' and empty lines are allowed, e.g.

SHA1 hex digests of allowed certificates:
88:EA:FA:AD:1C:CB:2D:34:9B:07:6D:2B:5C:0C:22:23:9F:F5:03:32
B7:63:C4:85:E8:2A:F2:AD:C6:B6:1D:01:0D:AE:FE:D0:9B:46:B3:80

The digest lines may use colons, dashes or spaces as additional separators.

A malformed SHA1 digest entry will cause the server fail at startup with a
notice to the log file.

2.4.5 Configuring User Authentication

The mxODBC Connect Server provides a user authentication mechanism to
protect the server itself (not only the database) from unauthorized access.

User authentication is disabled by default to make a first time
configuration easier, but should be setup once the basic client-server
communication has been configured and found working, unless you are
using the more secure certificate based authentication.

To enable user authentication, edit the server-config.ini file and set the
auth_mode setting in the [Authentication] section to 'file' (without
the quotes).

 Authentication Protocol

The authentication protocol implemented by mxODBC Connect follows a
similar scheme as the HTTP Basic Authentication protocol and provides a
comparable level of security.

It is usually better to always use SSL encrypted connections, to prevent
someone from stealing database passwords, the session cookie of a logged
in session or applying a replay attack to get access to the mxODBC
Connect Server.

41

mxODBC Connect - Python Database Interface

 Password File authorized-users.txt

You can then either create a password file based on the example file
authorized-users-example.txt shipped with the server or use the password-
tool to create and administer the file.

When creating the file, it is a good idea to make sure that the file can only
be read by the server daemon or service. It is also possible to change the
default name authorized-users.txt of the password file by adjusting the
password_file entry of the [Authentication] section.

The file format of the password file is similar to that of a web server
password file.

User entries are of the form "username: hash-value$salt$version",
with one line per entry. Empty lines, lines starting with '#' or ';' are ignored,
so that you can add comments as necessary.

Example:

test1: a84fcb9 … b65c9a5e0c2d60e6f97efe2337b4924d2$7465737431$2.1
test2: c562370 … 3561c0102dbd19f87143576d1215b4aa2$7465737432$2.1

The salted SHA-256 hash values can easily be created using the password-
tool command-line application for editing the file, since this provides all the
necessary encoding of the password. As of mxODBC Connect 2.1, the
authorized-users.txt file entries should no longer be created using external
tools.

Please note that even though we switched from simple MD5 hashes used
in mxODBC Connect 2.0 and earlier to salted SHA256 hashes for better
security, these password files are not as secure as OS level password files
using more sophisticated algorithms. They just provide an additional level
of security when used together with certificate based authentication.

 Using the password-tool

The password-tool command-line application is available as
~/bin/password-tool in the Unix installation of the server and as password-
tool.exe in the Windows installation. Both provide a command-line option-
based interface and an interactive shell-like interface to edit the password
file.

 Command-line Options of the password-tool

The password-tool application prints out a list of options when started with
-h option:

42

2. mxODBC Connect Server Installation

eGenix mxODBC Connect Server - Password Tool

Synopsis:
 password-tool [options]

Options and default settings:
 -f arg password file (authorized-users.txt)
 --file arg password file (authorized-users.txt)
 --add arg add user arg
 --update arg update user arg
 --delete arg delete user arg
 --list list all entries
 -p arg password
 --password arg password
 -v generate verbose output
 --verbose generate verbose output
 -h show this help text
 --help show this help text
 --debug enable debugging
 --copyright show copyright
 --examples show examples of usage

Note: When started without options, the script goes into
interactive mode.

Options explained in more detail:

--file arg

Edit the password file arg.

The default is to use the file specified in the server configuration as
password file.

--add arg

Add a new user arg to the password file.

--update arg

Update the user arg's password file entry, ie. set a new password.

--delete arg

Delete user arg from the password file.

--list

List all entries currently found in the password file.

--password arg

Provide the password to use for any subsequent action on the command
line.

If this option is not used, the script will read the password from the
terminal or stdin (without displaying it).

43

mxODBC Connect - Python Database Interface

 Interactive Mode of the password-tool

When called without any options, the password-tool goes into an
interactive mode which allows editing the password file using a set of basic
commands.

On Windows, this can also be done by clicking on the product's "Configure
User Access" start menu entry or from the tray icon menu.

After start-up, the password-tool shows a dialog and asks for action
command input:

eGenix mxODBC Connect Server - Password Tool

Possible actions:

 add - add a new user
 update - update an exiting user
 delete - delete an existing user
 list - list all users
 quit - quit the application

>>>

You enter the action commands at the ">>>" prompt, followed by return.
Only the first character of the actions has to be entered.

The various actions will then ask for more input as necessary.

To exit the password-tool, enter "q", followed by return.

Note:
In interactive mode, the password-tool will always edit the password file
configured in the server-config.ini file, usually authorized-users.txt.

2.5 ODBC Driver Configuration Hints

The typical installation of a mxODBC Connect will have the server part
installed directly on the database server and the client parts on the
machines running the application.

44

2. mxODBC Connect Server Installation

2.5.1 Setting up the optimal communication technique

In order to benefit from the locality of having the mxODBC Connect Server
installation running directly on the database, you have to make sure that
the ODBC data sources configured on the database server use the best
available communication protocol for connecting to a local database server.

Choosing a TCP/IP connection type for the ODBC data sources will not give
you the best performance.

If possible, you should select communication options such as Shared
Memory, Named Pipes, Domain Sockets, or similar communication
methods that allow fast and direct communication between the ODBC
driver and the database kernel.

For MS SQL Server 2000 this option would be Named Pipes. MS SQL
Server 2005 and later also support the more efficient Shared Memory
communication method.3

Please refer to your database documentation on how to setup the ODBC
driver and database for using the optimal communication technique for
local connections.

2.5.2 Disabling options that are not needed for local
connections

Also make sure that you have additional features such as connection
encryption switched off for ODBC data sources that you intend to use with
mxODBC Connect Server. Since the communication never leaves the
server, encrypting it would only cause a performance hit and not result in
better security.

3 MS SQL Server 2005 and later use the SQL Server Native Client as ODBC driver. The
communication protocols for this driver are defined in the SQL Server Configuration
Manager.

45

mxODBC Connect - Python Database Interface

3. mxODBC Connect Client
Installation
The mxODBC Connect product consists of a stand-alone server component
and client packages for various platforms. The installers for both
components are distributed separately.

You only need to integrate the client side package in your application for
ODBC functionality over the network. With mxODBC Connect it is no
longer necessary to have an ODBC driver installed on the machine where
you run your Python-based applications.

The mxODBC Connect Client package is distributed as an add-on for the
eGenix.com mx Base Distribution (egenix-mx-base). Please visit
http://www.egenix.com/products/python/mxBase/ to download the latest
version of the eGenix.com mx Base Distribution for your platform and
Python version.

If you also want to benefit from encrypted connections between the
mxODBC Connect Client and Server, then you additionally need the Python
standard library module ssl installed, which is available in Python 2.6 and
later, or the eGenix.com pyOpenSSL Distribution (egenix-pyopenssl).
Please visit http://www.egenix.com/products/python/pyOpenSSL/ to
download the latest version of the eGenix.com pyOpenSSL Distribution.

46

http://www.egenix.com/products/python/mxBase/
http://www.egenix.com/products/python/pyOpenSSL/

3. mxODBC Connect Client Installation

IMPORTANT NOTE:

Before installing the egenix-mxodbc-connect-client package, you will
have to install the egenix-mx-base distribution which contains packages
needed by mxODBC Connect.

Even though both distributions use the same installation procedure,
please refer to the egenix-mx-base installation instructions on how to
install that package.

3.1 Upgrading mxODBC Connect Client

3.1.1 Upgrading from 2.0 to 2.1

 mxODBC 3.3 API

mxODBC Connect Server uses the new mxODBC 3.3 version on the server
side, which provides better compatibility with current ODBC drivers and
includes a number of important new features, most notably the addition of
support for in/out and output parameters in SQL commands and stored
procedures and the ability to specify alternative row constructors in a very
efficient way.

Please see the mxODBC User Manual and Reference Guide for details on
the mxODBC 3.3 API.

mxODBC Connect Client supports all features of the mxODBC 3.3 API,
with the exception of a few details that are outlined in section 6.
Differences between mxODBC and mxODBC Connect.

What follows is a quick overview of the changes and enhancements which
are visible on the client side of mxODBC Connect. For server side
enhancements, please have a look at section 2.1 Upgrading mxODBC
Connect Server.

 Stored Procedures

• mxODBC Connect now has full support for input, output and
input/output parameters in stored procedures and stored functions,
allowing easy integration with existing databases systems.

47

mxODBC Connect - Python Database Interface

 User Customizable Row Objects

• Added support for user customizable row objects by adding
cursor/connection .rowfactory and .row constructor attributes. When
set, these are used to wrap the normal row tuples returned by the
.fetch*() methods into dynamically created row objects.

• Added new RowFactory classes to support cursor.rowfactory and
cursor.row. These allow dynamically creating row classes that provide
sequence as well as mapping and attribute access to row fields - similar
to what namedtuples implement, but specific to result sets.

 Fast Cursor Types

• Switched to forward-only cursor types for all database backends, since
this provides a much better performance for MS SQL Server and IBM
DB2 drivers.

• Added a new .cursortype attribute to allow adjusting and inspecting the
ODBC cursor type to be used for an mxODBC Connect cursor object.
Default is to use forward-only cursors, but mxODBC Connect also
supports several other useful cursor types such as static cursors with
full support for result set scrolling.

 More new Features

• Enhanced cursor.prepare() to allow querying cursor.description right
after the prepare step and not only after calling a cursor.execute*()
method.

• Added iterator/generator support to .executemany(). The parameters
list can now be an iterator/generator, if needed.

• Added new connection.dbapi property to easily access module level
symbols from the connection object.

• Timestamp seconds fraction resolution is now determined from the
scale of a datetime/timestamp SQL column, using the
connection.timestampresolution as lower bound, when using SQL type
binding. In Python type binding, the connection.timestampresolution
determines the scale with which a variable is bound. This allows for
greater flexibility when dealing with database backends that don't
provide full nano-second second resolution, such as e.g. MS SQL
Server.

• mxODBC Connect now accepts Unicode string values for
date/time/datetime/timestamp column types in SQL type binding mode.

48

3. mxODBC Connect Client Installation

Previous versions already did in Python type binding mode.

• mxODBC Connect now uses unicode(obj, encoding) semantics when
binding Python objects to SQLWCHAR database parameters.
Additionally, it ignores the encoding in case obj is a number, to avoid
conversion errors.

• Added new cursor.encoding attribute. This gets its default values from
the connection the cursor was created on.

• Added cursor.bindmethod which inherits from connection.bindmethod
when creating the cursor. This allows adjusting the variable bind
method on a per-cursor basis, rather than only on a per connection
basis as in previous mxODBC Connect versions.

 mxODBC Connect API Enhancements

• The SQL lookup object is now cached on the client side to avoid
frequent roundtrips when using symbols which are needed for stored
procedures with input/output parameters.

• The SQL lookup object now supports ODBC 3.8 symbols and values,
including driver specific symbols used by the MS SQL Server Native
Client and IBM DB2 ODBC drivers.

• Improved the server side object management to simplify client side
garbage collection considerations. Even though we still encourage
using explicit garbage collection of cursors, connections and server
sessions on the client side, mxODBC Connect Server will now handle
most situations even without these explicit calls.

 Asynchronous Processing

• Tested with the latest gevent and greenlet packages. mxODBC Connect
Client will happily work together with the asynchronous libraries
gevent. All it takes is a single configuration entry in the client side
config file.

 Security Enhancements

• Enhanced user authentication to use salted SHA-256 hashed passwords
when transferring login data from the client to the server. This provides
better protection when using plain text client server setups.

49

mxODBC Connect - Python Database Interface

3.1.2 Upgrading from 2.0.x to 2.0.4

 New connection_cursortype server configuration parameter

In version 2.0.4 of the mxODBC Connect Server, we have added a new
configuration setting to the [Connection] sections called
connection_cursortype.

This allows you to pre-configure the new mxODBC
connection.cursortype to a fixed value without having to change the
client side application.

3.1.3 Upgrading from 2.0.x to 2.0.3

 New .cursortype Attribute

We found a major performance problem with the static ODBC cursors used
in mxODBC Connect 2.0.x. To address this, a new connection and cursor
attribute .cursortype was backported from mxODBC Connect 2.1 to the
2.0.3 release.

 Enhance MS SQL Server and IBM DB2 Fetch Performance

With this new attribute you can adjust the used ODBC cursor type easily.
Specifically for Microsoft SQL Server and IBM DB2 using forward-only
cursors instead of the default static cursors is strongly advised - unless you
have a need for static cursors. Please see the mxODBC User Manual and
Reference Guide for details on the various cursor types.

Here's an example of how to change your applications to benefit from the
enhanced performance using forward-only cursors:

Connect to the remote database
from mx.ODBCConnect.Client import ServerSession
session = ServerSession(...)
ODBC = session.open()
connection = ODBC.DriverConnect(...)

Use the faster forward-only cursors
connection.cursortype = ODBC.SQL.CURSOR_FORWARD_ONLY

Cursors created on this connection will then default to forward
only cursors, instead of the mxODBC 3.2 default for SQL Server
of using static cursors
cursor = connection.cursor()

50

3. mxODBC Connect Client Installation

By simply setting the connection.cursortype to forward-only cursors, all
subsequently created cursors will use this new faster setting (see the
highlighted lines in the above example.

3.1.4 Upgrading from 1.0 to 2.0

 Network Related Changes

For the version 2.0 of the server, we have registered the port 6632 used by
mxODBC Connect with IANA (as mxodbc-connect service).

Since assigned ports are a rare resource, port 6633 is no longer used by the
server per default. However, you can still configure the server to use this
port, if needed.

Port 6632 can now be used for both SSL and plain-text communication. It is
even possible to have a mixed setup where some clients use plain-text and
others use SSL communication over that port.

 Configuration File Changes

Unlike version 1.0, version 2.0 is now using a single port to implement SSL
and plain-text communication. As a result, the configuration setting
using_ssl no longer switches the default port from 6632 to 6633.

If you have not changed your server configuration to only use and listen
on the single port 6632, you will have to explicitly add the port 6633
definition in the client configuration:

[Connection_RemoteServer]
host = database.example.net
using_ssl = 1
port = 6633
Please see section 2.1 Upgrading mxODBC Connect Server for details on
how to update the server configuration, which allows avoiding such client
side configuration changes.

 mxODBC Feature Changes

mxODBC Connect Server uses the new mxODBC 3.2 version on the server
side, which provides better compatibility with current ODBC drivers and
also includes a number of new features compared to the older mxODBC
3.0 version included in mxODBC Connect Server 1.0.

51

mxODBC Connect - Python Database Interface

Please see the mxODBC User Manual and Reference Guide for details on
the mxODBC API changes.

mxODBC Connect Client supports all features of the mxODBC 3.2 API,
with the exception of a few details that are outlined in section 6.
Differences between mxODBC and mxODBC Connect.

Note that unlike the mxODBC 3.2 stand-alone version, mxODBC
Connect Client is compatible with gevent. See 5.3 gevent Support for
details.

3.2 mxODBC Connect Client Installation on
Windows

The mxODBC Connect Client is a regular Python package. It allows to
connect your mxODBC compatible application to an ODBC compatible
database over a network.

In order to connect to a database you need to run a properly configured
mxODBC Connect Server on the machine with the target ODBC driver,
usually the machine running the target database itself.

3.2.1 Prerequisites

• Python 2.5 or later installed. See http://www.python.org for details
and download instructions.

• eGenix's mx Base extension installed. See
http://www.egenix.com/products/python/mxBase/ for details and
download instructions.

• For SSL support (optional), you should either have eGenix's
pyOpenSSL Distribution installed or use the Python standard lib
module ssl. See
http://www.egenix.com/products/python/pyOpenSSL/ for details for
details and download instructions of eGenix's pyOpenSSL
distribution.

Note that using SSL encrypted communication is not allowed in all
countries. Please check with your local authorities whether you are
permitted to use encryption.

52

http://www.python.org/
http://www.egenix.com/products/python/mxBase/
http://www.egenix.com/products/python/pyOpenSSL/

3. mxODBC Connect Client Installation

The client has been tested with the official Python 2.5, 2.6 and 2.7
installers. Python 2.4 and below are not supported.

3.2.2 Procedure

Note:
You may need administrative privileges on Windows XP/2003 and later to
successfully complete the installation or un-installation process.

Please uninstall any existing version of mxODBC Connect Client if you have
one installed (see section 3.2.3 for details).

Please download the Windows installer from eGenix.com that matches your
Python version. Double click on the executable you downloaded to begin
the installation process. Depending on the Windows version, you may have
to click through a security dialog to proceed. Then follow the instructions of
the installer.

You can access the packages as mx.ODBCConnect.Client. For more
information, please see the detailed usage instructions in section 4.Using
mxODBC Connect.

3.2.3 Uninstall

The Windows installer will automatically register the installed software with
the standard Windows Software Setup tool.

To uninstall the server, run the Windows Software Setup tool and select the
"eGenix mxODBC Connect Client x.x.x" entry for uninstallation. This will
remove the package from your Python installation.

3.3 mxODBC Connect Client Installation on
Unix

The mxODBC Connect Client is a regular Python package. It allows to
connect your mxODBC compatible application to an ODBC compatible
database over a network. In order to connect to a database you need to run

53

http://www.egenix.com/

mxODBC Connect - Python Database Interface

a properly configured mxODBC Connect Server on the machine with the
target ODBC driver, usually the machine running the target database itself.

3.3.1 Prerequisites

• Python 2.5 or later installed. See http://www.python.org for details
and download instructions.

• eGenix's mx Base extension installed. See
http://www.egenix.com/products/python/mxBase/ for details and
download instructions.

• For SSL support (optional), you should either have eGenix's
pyOpenSSL Distribution installed or use the Python standard lib
module ssl. See
http://www.egenix.com/products/python/pyOpenSSL/ for details for
details and download instructions of eGenix's pyOpenSSL
distribution.

Note that using SSL encrypted communication is not allowed in all
countries. Please check with your local authorities whether you are
permitted to use encryption.

The client has been tested with the official Python 2.5, 2.6 and 2.7
installers. Python 2.4 and below are not supported.

3.3.2 Installation using prebuilt package archives

Note:
You may need root privileges to successfully complete the installation or
un-installation process.

Please uninstall any existing version of mxODBC Connect Client if you have
one installed (see section 3.3.5 below for details).

To reduce the number of binaries that we have to create for each release,
we have adapted a new generic distribution format that works on all Python
platforms: the Prebuilt Distribution Format.

Technically, this format is a standard Python distutils distribution, but with
only the build/ directory and without the source tree.

54

http://www.python.org/
http://www.egenix.com/products/python/mxBase/
http://www.egenix.com/products/python/pyOpenSSL/

3. mxODBC Connect Client Installation

After installation, you can access the packages as
mx.ODBCConnect.Client. For more information, please see the detailed
usage instructions in section 4.Using mxODBC Connect.

 System-wide Installation

In order to install such a distribution, please follow these instructions:

 1. Download and unzip the archive into a temporary directory

 2. Change into the distribution directory

 3. Run the following command using the Python interpreter with which
you intend to work (this could be the default one, or an application specific
one depending on your needs):

 sudo python setup.py install

The distribution will then be installed into the standard directory for Python
extensions of your Python installation (usually the site-packages/
subdirectory of the Python standard library directory).

To uninstall, follow the same steps as above, but use the command
uninstall instead:

 sudo python setup.py uninstall

 User Installation

You will need to be able to sudo on the target machine or know the root
password for the above to work. If you don't have permission to install
packages as root, you can still install the distribution into a local directory,
e.g. ~/lib/python2.7 by using the following installation command:

 python setup.py install --home=/home/user/

This will install the distribution into the directory /home/user/lib/python/. In
order to have Python see this directory and make it useable for import, you
have to adjust the PYTHONPATH environment variable to include this
directory, e.g.

 export PYTHONPATH=/home/user/lib/python

To see all the possible installation options, run the install script using the
help options:

 python setup.py install --help

To uninstall, follow the same steps as above, but use the command
uninstall instead:

 sudo python setup.py uninstall --home=/home/user/

55

mxODBC Connect - Python Database Interface

Hint: On some Linux distributions you may get an error when using the
--home option. In such cases, please try using the --prefix option
instead.

3.3.3 Uninstall when using prebuilt package archives

The easiest way to uninstall the mxODBC Connect Client package is to
unzip the pre-built binary package and then run:

 sudo python setup.py uninstall

Depending on how you have installed the package, you have to provide
additional options to the uninstall command.

If that doesn't work in your case, you can also simply remove the
ODBCConnect/ subdirectory from your /…path to Python…/site-
packages/mx/ directory of your Python installation (the exact location
depends on your Python installation).

3.3.4 Installation using egg archives

The egg archives we provide are made available through two PyPI-style
indexes which the egg tools setuptools/easy_install/pip/zc.buildout can
access to automatically download and install the right egg archive.

There are two indexes, one for Python UCS2 builds:

http://downloads.egenix.com/python/index/ucs2/

and one for Python UCS4 builds:

http://downloads.egenix.com/python/index/ucs4/

 Automatic Download and Installation

If you are using a Python UCS2 build, then you can install the egg archives
using this command:

easy_install -i http://downloads.egenix.com/python/index/ucs2/ \
 egenix-mxodbc-connect-client

For UCS4 builds, please use this command:

easy_install -i http://downloads.egenix.com/python/index/ucs4/ \
 egenix-mxodbc-connect-client

56

3. mxODBC Connect Client Installation

The command line parameters for other tools such as pip are similar. Please
consult their documentation for details.

 Manual Download and Installation

In some cases, easy_install and other download tools cannot map the
platform name to the name used in the egg archive. If you get errors during
the installation, please manually download the right egg archive and then
run the command directly on the downloaded egg archive:

easy_install \
 egenix_mxodbc_connect_client-2.0.0-py2.7.egg

3.3.5 Uninstall when using egg package archives

Since setuptools doesn't provide an uninstall command you have to
manually remove the installation:

1. remove the egenix-mxodbc-connect-client.* egg directory from
your Python site-packages/ directory and

2. edit the file easy-install.pth in that directory to remove the
corresponding egg entry.

57

mxODBC Connect - Python Database Interface

4. Using mxODBC Connect
The mxODBC Connect product provides a client-server-based access to the
ODBC API of ODBC managers and drivers over a network.

In order to connect to a database you need to have a properly configured
mxODBC Connect Server running on the machine that provides the ODBC
drivers for your database. This will typically be your database server.

4.1 Architecture of mxODBC Connect

The typical mxODBC Connect setup looks like this:

Python Application

↓

mx.ODBCConnect.Client Package

↓

(TCP/IP network with optional SSL encryption)

↓

mxODBC Connect Server service or daemon process

↓

ODBC Manager (Windows, unixODBC, iODBC)

↓

ODBC Driver

↓

Database

58

4. Using mxODBC Connect

The upper blue part in the diagram executes within the process of the
Python application. The green part usually runs in a separate process and
usually also on a different machine.

mxODBC Connect makes your client application fairly independent of the
database server. You can use the same client with 32-bit or 64-bit servers
without modifications.

It is also possible to use mxODBC Connect on the same machine, e.g. if
you have a 64-bit Python application that needs to use a 32-bit ODBC
driver.

4.2 mxODBC Connect Client Configuration

Since the mxODBC Connect product is client-server-based, the mxODBC
Connect Client will have to know where to find the corresponding
mxODBC Connect Server.

The configuration data can either be stored in a client-side INI-style
configuration file, or passed to the client session constructor as dictionary
of dictionaries containing one dictionary per section.

4.2.1 mxODBC Connect Client Configuration File Format

If you are using a configuration file, please make sure your client
application has read access to this file.

The configuration file uses an INI-file format (see section 2.4.1 on page 25
for details on the syntax) and has the following sections and options with
their default values:

 [Connection_Name]

Each named connection section defines a network connection used to
connect to a running mxODBC Connect Server.

Multiple connections with different names can be specified to provide fail-
over with multiple servers. The only requirement is that the section names
contain the term "Connection" or "connection".

59

mxODBC Connect - Python Database Interface

Examples:

[Connection_Local], [Connection_SSL], [RemoteConnection],
[FailOverConnection], [CompanyVPNConnection].

Note that the order of connection sections is not preserved, so the client
will try to connect to the servers in undefined order. You can define the
order of connection attempts by defining the [Communication]
server_connections option (see below).

host = 127.0.0.1

IP address of the mxODBC Connect Server.

The server must listen on this address and must be configured to accept
connections from the client's IP address.

port = 6632

Port number to connect to.

Default port number is 6632 (IANA name mxodbc-connect) which is
used for both plain and secure (SSL) connections and is a IANA
registered port for eGenix mxODBC Connect.

The mxODBC Connect Server must listen on this port.

Please ensure that no firewall is blocking the communication between
the client and the server.

 Advanced Connection Options

You normally do not need to adjust these.

socket_timeout = None

TCP socket timeout in seconds or None for disabling connection
timeout.

This is the length of inactivity period after the TCP connection should be
dropped. You should normally not have to use this option.

 Options for SSL Encrypted Connections

These options are only needed for SSL encrypted connections.

using_ssl = 0

Setting a non-zero value enables the secure socket layer (SSL) wrapper.

60

4. Using mxODBC Connect

You can use SSL to encrypt all communication and authenticate your
clients via certificate verification (see the documentation of the server
side SSL configuration "Client Certificate Access Rules" on page 30).

For SSL connections, a client certificate and private key can be provided as
either file or string to enhance security and allow client authentication
based on client certificates:

client_private_key_file = client.pkey

Name of the client's PEM-encoded private key file.

Be sure to check the file permissions on the private key. It should be
readable by the client application's user only.

client_certificate_file = client.cert

Name of the client's PEM-encoded certificate file.

The server can authenticate clients by verifying their certificates. You
must provide a valid and authorized certificate in order to connect to a
server protected based on certificates.

client_private_key_string = ''

String with the client's PEM-encoded private key.

client_certificate_string = ''

String with the client's PEM-encoded certificate.

The server installer provides a default, self-signed certificate-key pair
client.pkey and client.cert which can be used by clients.

 [Communication]

Settings for network connections.

Note:
This section is only needed if you want to configure a fail-over setup for
your client application.

server_connections = defaults to the list of all defined
connection sections

This option must list connection section names as comma-separated list.

It can be used to determine the order in which the client will attempt to
find a working server or to enable/disable some connection sections in
the configuration file.

Default is to try all connection sections defined in the file, sorted by
name.

61

mxODBC Connect - Python Database Interface

Example:

server_connections = PrimaryServer, SecondaryServer

The client will try to connect to the mxODBC Connect Servers in the
order given in this list. It will use the first successful connection. An
OperationalError is raised if none of the configured mxODBC
Connect servers allowed connections.

Listing multiple connections is useful to provide a fail-over setup. Note
that the client application must catch connection errors and has to try to
reconnect multiple times in order to implement a viable fail-over
solution.

 [Authentication]

The mxODBC Connect Server can be protected against unauthorized
access using different authentication mechanisms. This section configures
how authentication is handled by the server.

Note that these authentication checks are not very secure. It is generally
better to use SSL connections only and implement access control via client
certificate checking than relying just on authentication using a username
and a password.

login_salt = <internal default>

In order to provide some extra protection when sending the login
request over the network, client and server can be configured to add a
salt string to the hashed login credentials.

Only set this, if you want to override the internal default or need to
separate multiple mxODBC Connect installations from each other.

The salt string should not be too long and should not contain spaces. If
given, the server setting for this variable must match those of the clients
that want to connect to the server. The login_salt can be thought of
as shared secret.

 [Session]

This section controls the details of the communication with the server.

remote_module = Manager

Name of the mx.ODBC subpackage to be used to connect the database
on the server side, regardless of the OS the client runs on.

Possible values: Windows, iODBC, unixODBC and Manager

62

4. Using mxODBC Connect

The default value Manager will have the server will use the default
ODBC manager on the server side. This allows the client to be mostly
independent of the server’s configuration.

enable_compression = 1

Network communication compression.

Setting this variable to 1 will enable compression of TCP packets sent by
the client, setting the variable to 0 causes compression to be disabled.

Compression is enabled per default, in order to reduce network traffic
and enhance roundtrip times.

On very fast networks or local connections you may want to disable
compression for enhanced performance. We have found that even on
Gigabit Ethernet networks, enabling compression does provide a
performance increase.

compression_ratio = 2

Compression ratio to use for network communication compression.

Valid values are 1 (least compression, fast) - 9 (best compression, slow).

The default value of 2 is a good compromise for fast networks.

You may want to experiment with the setting to tune it for best
performance on your network.

In some setups, e.g. fast server and slow clients, it may be wise to use
different compression ratios for clients and servers. The server setting
affects packets sent from the server to the client, whereas the client
setting affects packets sent from the client to the server.

max_chunk_length = 64000

Maximum chunk length for TCP read/write operations.

You normally don't have to change this value.

receive_timeout = 10

Timeout for one TCP receive operation in seconds.

You will normally not need to change this value.

send_timeout = 10

Timeout for one TCP send operation in seconds.

You will normally not need to change this value.

 [Logging]

This section defines the details of logging output.

63

mxODBC Connect - Python Database Interface

log_level = mx.Log.SYSTEM_IMPORTANT

Log level. See mxLog for details.

log_file = client.log

This is the name of the log file to use.

Please make sure your client application has write permission to this file
(and possibly the directory).

 [Integration]

This section defines configuration details needed for integrating mxODBC
Connect Client with third party software.

ssl_module = no default value

Defines which SSL module mxODBC Connect Client should try to
import and use on the client side. Possible values are ssl or
pyOpenSSL.

When not set, mxODBC Connect Client will first try to import the
pyOpenSSL module and fallback to the Python standard library ssl
module (available in Python 2.6 and later), if this doesn't work.

gevent = 0

mxODBC Connect Client comes with gevent support. If you are using
the gevent library, you can set this setting to 1 in order to enable
mxODBC Connect Client's gevent support. It will then integrate with the
gevent library and use the asynchronous versions of the socket and ssl
modules instead of the regular ones.

The [Integration] section was added in version 2.0.

4.2.2 Configuration Dictionary Format

The mxODBC Connect Client session constructor ServerSession takes a
parameter config_data which can be used to configure the session
without requiring installation of a client-side configuration INI file or to
override certain settings from the configuration file with new values.

The config_data dictionary must provide the same data as an INI file, but
prepared as dictionary of dictionaries, with one dictionary per INI-section,
e.g.

config_data = {
 'Logging': {
 'log_file': 'client.log',

64

4. Using mxODBC Connect

 },
 'Communication': {
 'server_connections': 'Connection_SSL, Connection',
 },
 'Connection': {
 'host': '192.168.1.100',
 'port': 6632,
 },
 'Connection_SSL': {
 'host': '192.168.1.100',
 'port': 6632,
 'using_ssl': 1,
 }
}

For details on section names and options, please see section 4.2.1
mxODBC Connect Client Configuration File Format. For details on the
ServerSession constructor API, please see section 5.2 Multi-Threaded
Applications.

If both config_file and the config_data dictionary are given on the
ServerSession constructor, the values from config_data are merged
into the values read from the configuration file or override them.

4.2.3 mxODBC Connect Client Configuration Hints

Since the mxODBC Connect Server runs on the server machine, the client
applications cannot or should not always know which ODBC manager the
server machine uses as default.

For this reason, mxODBC Connect Server provides a generic interface to
the server’s default ODBC manager. The corresponding mxODBC sub-
package is called mx.ODBC.Manager.

By configuring all mxODBC Connect Clients to use this package as server
side package, you make sure that the clients will always use the default
ODBC manager on the server side.

Because this is a useful setting, we have made it the default in the client
configuration. If you want to make it explicit, simply configure the clients to
use the Manager module:

[Session]
remote_module = Manager

65

mxODBC Connect - Python Database Interface

4.3 mxODBC Connect Client Example

First, you have to setup a working mxODBC Connect Server on the
machine that has the ODBC drivers installed (see above).

4.3.1 Client Configuration

After you have a working server, you'll have to create a client side
configuration file.

Contents of the example connect-config.ini:

[Logging]
 log_file = client.log

[Server_Connection]
 host = 192.168.1.100
 port = 6632
 using_ssl = 0

The client in the above example will connect to a Windows based mxODBC
Connect Server which listens on 192.168.1.100:6632 for plain text
(unencrypted) connections..

4.3.2 Connecting to the mxODBC Connect Server

Your stand-alone mxODBC based application usually connects to the
database like this:

import mx.ODBC.Windows as ODBC

and then uses the ODBC object to reference the mxODBC API.

In order to use the mxODBC Connect Client you have to successfully
connect to an mxODBC Connect Server first to get a reference to an object
implementing the mxODBC API:

from mx.ODBCConnect.Client import ServerSession

session = ServerSession('connect-config.ini')
ODBC = session.open()

Creating a ServerSession instance connects to the mxODBC Connect
Server. The ServerSession instance represents your connection to the
mxODBC Connect Server, so you have to keep a reference to the object or
your connection will be lost.

66

4. Using mxODBC Connect

The .open() method returns an efficient proxy object which implements
the same API as mxODBC's subpackages have. The subpackage you are
proxying requests to depends on the client configuration setting [Session]
remote_module. It defaults to mx.ODBC.Manager which is an alias to the
server platform's default ODBC manager and should be a reasonable choice
in most cases. Please see the mxODBC documentation for details on how
the mx.ODBC.Manager alias is chosen.

After this initial setup has been done, you can use the ODBC object as if
you were running the application on the mxODBC Connect Server
machine, e.g.

connection = ODBC.DriverConnect('DSN=myDSN;UID=user;PWD=pwd')
cursor = connect.cursor()
cursor.execute('select * from mytable')
results = cursor.fetchall()
cursor.close()
connection.close()

Once you are done using the ODBC session object, you should call the
.close() method on the session object in order to free the resources on
the server side and close any still open database connections associated
with the client:

ODBC.close()

The ServerSession object will also close itself at garbage collection time
(ie. when all references to it have been removed from Python namespaces),
however, it is not always clear when this happens due to the way Python's
garbage collection works, so closing the session explicitly is the preferred
way to close the session.

 Storing ServerSessions as module globals

Please note that if you store the ServerSession object as module global,
the object will likely only be garbage collected at Python interpreter
shutdown time, i.e. when exiting the application.

Since Python cleans up the various module namespaces in more or less
random order, the implicit closing of the session may not succeed: Python
may have already removed part of the mxODBC Connect Client libraries
needed to communicate with the server.

If you use the ServerSession object as module, please register its
.close() method as Python atexit function. Python will then call the
.close() method just before starting to shutdown all modules when
exiting the application:

Register atexit function to make sure that the session object
gets closed before the module gets destroyed.
import atexit
atexit.register(ODBC.close)

67

mxODBC Connect - Python Database Interface

Note that mxODBC Connect Server will automatically free up resources on
the server side if it detects a broken connection to the client. Even without
successfully calling the .close() method, the database connections will
get closed on the server side.

However, there is a slight delay compared to the explicit approach, since
the server only checks connections in regular intervals (usually every 2
seconds, see [Activity] check_interval in the server configuration file
documentation on page 34).

4.3.3 Exception Handling

Exception classes originally imported from mx.ODBC.Error will have to be
imported from mx.ODBCConnect.Error when using the mxODBC Connect
Client.

This may require slight modifications to your client application.

All exception classes imported from mx.ODBCConnect.Error are
subclassed from the same built-in exception classes as their original
counterparts from mx.ODBC.Error, so generic except clauses should work
as expected.

See the sections below for additional features, differences and limitations.

4.4 Testing

To thoroughly test your mxODBC Connect setup, you can use the new
mxODBC test script test.pyc on the client side, which has the ability to run
tests against the mxODBC API through an mxODBC Connect Server.

You have to specify ODBCConnect as package and pass the name of your
test configuration file to test.pyc:

python mx/ODBCConnect/Misc/test.pyc \
 --package=ODBCConnect \
 --dsn="DSN=…;UID=…;PWD=…" \
 --client-config=client-config.ini \
 --client-log=client.log

(all on one line and without the backslashes ("\"))

68

4. Using mxODBC Connect

This will test a lot of mxODBC and database features, many of which are
only supported by a few databases, so expect quite a few "not supported"
messages.

Note:
test.pyc currently only supports anonymous server logins. This may
change in future versions of the mxODBC Connect Client.

 test.pyc Options

--package

Name of the mxODBC package to test.

--dsn

ODBC datasource connection string.

--client-config

Location of the mxODBC Connect Client configuration file.

--client-log

Location of the mxODBC Connect Client log file. This is optional. The
script defaults to logging everything to stderr.

For more information on the parameters, run test.pyc with option '--help'. It
will then print a help screen with available options.

Note:
The mxODBC subpackage to be used will be determined by the [Session]
remote_module setting in you test configuration file. This is 'Manager'
by default, which means the default ODBC manager installed on the
server side.

69

mxODBC Connect - Python Database Interface

5. mxODBC Connect Client Python
API
The mxODBC Connect Client provides a way to easily access the mxODBC
package API of the mxODBC Python extension on the mxODBC Connect
Server.

All the network communication, proxying and error handling is done
transparently by the mxODBC Connect client-server logic, to make using
the client API as easy as using the stand-alone version of mxODBC.

Applications that were written for mxODBC should not require significant
changes when porting them to mxODBC Connect.

5.1 API Design

Since mxODBC Connect works in a client-server setup, the client will first
have to initialize a server session. This is done by creating a ServerSession
object.

The ServerSession object maintains the configuration information and
deals with the network communication between the client and the
mxODBC Connect Server.

Since mxODBC supports multiple subpackages to implement access to
different ODBC manager and drivers, the ServerSession object allows
connecting the session to one of these packages.

The default package is defined by the remote_module setting in the
[Session] section of the configuration file or settings. If not given, mxODBC
Connect will use the mx.ODBC.Manager package which always defaults to
the standard ODBC manager on the platform where mxODBC Connect
Server is installed, e.g. mx.ODBC.Windows on Windows, mx.ODBC.iODBC
on Mac OS X and one of mx.ODBC.unixODBC or mx.ODBC.iODBC on other
Unix platforms.

In order to connect a ServerSession object to the remote mxODBC
package on the server side, an application must call the .open() method
on the object to open and initialize the connection to the server.

70

5. mxODBC Connect Client Python API

mxODBC Connect Client will then return a module proxy object that makes
the package's API available on the client side. This works very much like an
import in Python, e.g. instead of writing:

from mx.ODBC import Manager as ODBC

in the stand-alone version of mxODBC, you'd write:

from mx.ODBCConnect.Client import ServerSession

session = ServerSession(config_file='conf.ini')

ODBC = session.open()

The ODBC module proxy object will then work in a nearly identical way as
the ODBC module from the stand-alone version of mxODBC.

If you have multiple connections defined in your mxODBC Connect Client
configuration, then .open() will try the connections in the order specified
by the [Communication] server_connections parameter.

In the following sections, we describe APIs that are special to the mxODBC
Connect version of mxODBC.

Once you have a module proxy object, you can use the standard mxODBC
connection and cursor APIs described in the mxODBC User Manual and
Reference Guide.

5.2 Multi-Threaded Applications

mxODBC Connect works well in multi-threaded applications and is written
in a thread-safe way.

In order to make the best use of the available technology, you should
consider the options that you have to manage connections between threads
as outlined in the following sections.

Note that mxODBC Connect itself will not start new threads, so you can
safely use it in non-threaded applications as well.

5.2.1 Recommended Setups

If you intend to use mxODBC Connect with a multi-threaded application,
you have two possibilities:

71

mxODBC Connect - Python Database Interface

1. use a single ServerSession for the application, connected to the
mxODBC Connect Server, and have one or more database
connections open per thread of your application (this does not
work for SSL connections), or

2. have one ServerSession object per thread that needs to connect
to the database (this is the preferred method).

Please do not try to share database connections between threads. This is
not supported by the mxODBC Connect Client and not needed due to
the way mxODBC Connect works.

Also note that for SSL connections, you can only use option 2, since the
OpenSSL library used by mxODBC Connect does not support sharing SSL
connections between threads.

Both options allow using the mxODBC Connect Server from the multiple
threads that open database connections.

However, there is one important difference: all connections opened by a
single ServerSession are mapped to a single thread on the server. As a
result, the operations on the session are serialized on the server and thus
do not run in parallel.

For applications that run many quick queries, the difference will likely not
be noticeable, but if you have long running queries, you should definitely
choose the second method in order to have full flexibility of running the
queries in parallel.

The difference in amount of resources used by the two methods is
negligible. You should only consider using the first method or a
combination of the two in case you are planning to have many threads
running in parallel, each connected to a database.

5.2.2 Logging

If you intend to use custom mx.Log logging objects (via the logging
parameter in ServerSession objects), please make sure that you share the
logging object if you want to log to the same log file - not the log file itself.
Otherwise, you could end up seeing mangled output in the log file.

72

5. mxODBC Connect Client Python API

5.3 gevent Support

Tested with gevent 1.0.1 and greenlet 0.4.2.

mxODBC Connect Client can optionally integrate with the greenlets via the
Python package gevent and using the libevent polling library.

To enable gevent support for the mxODBC Connect Client, please enable
the integration setting in the client side configuration:

[Integration]
gevent = 1

mxODBC Connect Client will then use gevent APIs for communicating with
the server side, allowing other greenlets to run asynchronously while the
client waits for the server response.

5.3.1 Import Order

For best compatibility, please import the gevent package before importing
the mxODBC Connect Client into your Python application.

5.3.2 gevent Monkey-Patching

The client does not require enabling the gevent monkey patching features,
nor does it enable these itself. We have tested mxODBC Connect Client in
a gevent monkey-patched environment, but recommend using gevent APIs
directly rather than through the monkey patched setup.

5.4 mxODBC Connect Client ServerSession
Object

A ServerSession object manages the connection of a client application to the
mxODBC Connect Server.

It provides all the necessary networking logic to proxy requests to
mxODBC package module APIs to the server side in an efficient and reliable
way.

73

http://pypi.python.org/pypi/greenlet
http://www.gevent.org/
http://monkey.org/~provos/libevent/

mxODBC Connect - Python Database Interface

Module:

mx.ODBCConnect.Client.ServerSession.ServerSession

The class is also available directly via the mx.ODBCConnect.Client
module.

Usage Example:

from mx.ODBCConnect.Client import ServerSession

Setup a server session
session = ServerSession(config_file='client-config.ini')

Connect to the mxODBC Connect Server
server = session.open()

Connect to a database
connection = server.DriverConnect('DSN=...;UID=...;PWD=...')

Object Constructor:

ServerSession(config_file=None, config_data=None,
logging=None)

Initialize and configure an mxODBC Connect server session.

config_file can be given to specify a configuration file. If no
configuration file is specified, defaults are used instead.

config_data can be given as dictionary to override settings from the
config_file or the defaults. The dictionary has to include one
dictionary per INI section of the configuration that should be
overridden. It is possible to provide all configuration parameters via
config_data.

logging may be given to have the session use a different mx.Log
object. The default log object is setup using the configuration details
from the config_file and/or config_data.

Base class(es): object

Object Attributes:

.closed = True

State of the session.

True or False (1 or 0), depending on whether the session is connected
or not.

.server_version = ''

Version string of the mxODBC Connect Server.

74

5. mxODBC Connect Client Python API

This is only available after opening the session.

.session_id = None

Session ID string.

Object Methods:

.close()

Closes the session.

This method is automatically called when the session object is garbage
collected.

You can call this method to explicitly close the connection before
deleting the session object.

.open(username='', password='', module_name=None,
session_id=None)

Connect to the first available and working server connection listed in the
mxODBC Connect Client configuration. The method raises an
mx.ODBCConnect.Error.OperationalError if no connection can be
established.

Returns a module proxy object that exposes the mxODBC package API
of the module_name package of mxODBC on the server side.

username and password must be given if the server uses user
authentication. They must be set to the user authentication credentials
defined on the server side.

module_name defaults to the mxODBC package name defined in the
client configuration parameter [Session] remote_module. This is
usually set to 'Manager', so that the server's platform default ODBC
manager is used.

session_id may be given to reestablish the connection to a server
session, e.g. in case the network was down or unavailable for only a
short period of time.

5.5 mxODBC Connect Client Errors

All mxODBC Connect errors raised on the client side are available through
the mx.ODBCConnect.Error module.

The errors are grouped into errors which originate on the server side and
get reraised on the client side (Server Side Errors) and ones which are raised

75

mxODBC Connect - Python Database Interface

by the session logic (Session Errors). The latter are mostly related to
network problems. A client application should try to catch these errors and
issue a reconnect.

The Server Side Errors are also available via the mxODBC connection object
as attributes (just like they are in the stand-alone mxODBC product).

5.5.1 Server Side Errors

Error

Baseclass for all other exceptions related to database or interface errors.

You can use this class to catch all errors related to database or interface
failures. error is just an alias to Error needed for DB-API 1.0
compatibility.

Error is a subclass of exceptions.StandardError.

Warning

Exception raised for important warnings like data truncations while
inserting, etc.

Warning is a subclass of exceptions.StandardError. This may
change in a future release to some other baseclass indicating warnings.

InterfaceError

Exception raised for errors that are related to the interface rather than
the database itself.

DatabaseError

Exception raised for errors that are related to the database.

DataError

Exception raised for errors that are due to problems with the processed
data like division by zero, numeric out of range, etc.

OperationalError

Exception raised for errors that are related to the database's operation
and not necessarily under the control of the programmer, e.g. an
unexpected disconnect occurs, the data source name is not found, a
transaction could not be processed, a memory allocation error occurred
during processing, etc.

76

5. mxODBC Connect Client Python API

IntegrityError

Exception raised when the relational integrity of the database is affected,
e.g. a foreign key check fails.

InternalError

Exception raised when the database encounters an internal error, e.g.
the cursor is not valid anymore, the transaction is out of sync, etc.

ProgrammingError

Exception raised for programming errors, e.g. table not found or already
exists, syntax error in the SQL statement, wrong number of parameters
specified, performing operations on closed connections etc.

NotSupportedError

Exception raised in case a method or database API was used which is
not supported by the database, e.g. requesting a .rollback() on a
connection that does not support transaction or has transactions turned
off.

This is the exception inheritance layout:

StandardError
|__Warning
|__Error
 |__InterfaceError
 |__DatabaseError
 |__DataError
 |__OperationalError
 |__IntegrityError
 |__InternalError
 |__ProgrammingError
 |__NotSupportedError

5.5.2 mxODBC Connect Error Module

Note that unlike mxODBC, the exception classes are not available at the
package module top-level, ie. mx.ODBCConnect.ProgrammingError does
not work.

Instead you have to refer to the exception classes via the
mx.ODBCConnect.Error module, e.g.

from mx.ODBCConnect.Error import ProgrammingError

or

import mx.ODBCConnect.Error
try: … except mx.ODBCConnect.Error.ProgrammingError: …

77

mxODBC Connect - Python Database Interface

5.5.3 Session Errors

ConfigurationError

Raised for errors found in the client or server configuration files or data.

ConnectionFailureError

Raised when connection closed prematurely and in other cases.

ODBCConnectError

This is the base class for all mxODBC Connect related errors, e.g. ones
raised due to protocol or policy errors.

It is a subclass of the server error InterfaceError to allow catching
the error in DB-API compatible applications which were not specifically
written for mxODBC Connect.

PolicyViolationError

Error caused by configuration limits on the server side.

ProtocolError

Error in the mxODBC Connect protocol, e.g. due to a version mismatch
between client and server.

TimeoutError

Error due to a connection or server timeout.

5.6 mxODBC Connect Constants Module

mxODBC's new BinaryNull singleton is defined in the
mx.ODBC.Constants module on the server side. This is mapped to the new
mx.ODBCConnect.Constants module on the client side.

You will normally not need to import this module on the client, but instead
either use the binding of the singleton available via the mxODBC
subpackage proxy you created via session.open(), or directly via the
connection objects using connection.BinaryNull.

78

5. mxODBC Connect Client Python API

5.6.1 Available Constants

BinaryNull

BinaryNull is a special singleton which can be used to bind a NULL
value to binary column types for ODBC drivers which return a
conversion error when trying to do the same with the standard Python
None singleton.

The special value is never returned by mxODBC and only used as
parameter input value.

At the moment, this work-around is only needed for MS SQL Server,
when using the FreeTDS ODBC driver, or when using direct execution
or Python type mode with the SQL Server Native Client ODBC driver on
both Windows and Linux. Please see the respective driver notes for
details.

5.7 mxODBC API

All other aspects of creating connections and cursors can be taken straight
from the stand-alone version of mxODBC.

Please see the mxODBC User Manual and Reference Guide for details on
the connection and cursor APIs and specific suggestions for many different
common database backends.

The differences between the mxODBC Connect Client and the stand-alone
version of mxODBC are described in the next section.

79

mxODBC Connect - Python Database Interface

6. Differences between mxODBC and
mxODBC Connect
The most important difference between the stand-alone product mxODBC
and the client-server product mxODBC Connect is the ability to separate
the requirements regarding the ODBC driver setup and configuration from
the requirements of client application using mxODBC.

With mxODBC Connect, database access becomes mostly independent of
the differences between the server running the database and the client
machine running your application. They may have different number of
CPUs, bit architectures, byte ordering (LSB/MSB) and operating systems
(Windows/Linux).

eGenix has tried hard to make porting of mxODBC applications to
mxODBC Connect as easy as possible. Most features available in the stand-
alone mxODBC are also available in mxODBC Connect. However, there are
a few minor differences between direct and networked access to mxODBC:

6.1 Additional Features in mxODBC
Connect

6.1.1 Improved portability

The mxODBC Connect Client can be installed on any platform that is
supported by the eGenix mx Base Distribution package - which is pretty
much any platform that Python itself runs on.

There is no need to find a suitable ODBC driver for the platform on which
you intend to install the client. This removes one of the major obstacles in
getting mxODBC to run on more exotic platforms.

If you want to use encryption, you will also need the Python standard
library module ssl, which is available in Python 2.6 and later, or our
eGenix pyOpenSSL Distribution package. However, this is not essential for
working with mxODBC Connect.

80

http://www.egenix.com/products/python/mxBase/
http://www.egenix.com/products/python/pyOpenSSL/

6. Differences between mxODBC and mxODBC Connect

6.1.2 Improved data type support

Since the mxODBC Connect Server always runs on Python 2.7, the decimal
and datetime modules are always available on the server side. This allows
clients still running on Python 2.5 or 2.6 to communicate with the database
using types from these packages.

The Python datetime module and decimal module can be fully utilized with
Python 2.5 and 2.6 clients.

6.1.3 Improved Scalability

You can separate your client application and database server for improved
performance and scalability, e.g. to work around problems with the Python
Global Interpreter Lock (GIL)4.

They can reside on different physical or virtual machines or just run on
different CPU cores.

6.1.4 Asynchronous Execution Support using gevent

mxODBC Connect Client 2.0 and later support the gevent module for
running tasks asynchronously without using threads or by combining
asynchronous execution with threads. This allows for better scaling of
Python client side applications, especially on multi-core machines.

Please see section 5.3 gevent Support for details.

6.1.5 Automatic Fail-over

You can list multiple servers in your client configuration. Your
ServerSession will connect to the first working server in the configured
list.

You can also provide exception handlers for automatic reconnection on
connection lost errors and you have full control over the order in which the
connections attempts are done.

4 The Python Global Interpreter Lock (GIL) serializes access to the Python interpreter:
only one thread can execute Python code at a time.

81

http://www.gevent.org/

mxODBC Connect - Python Database Interface

6.1.6 Data compression

mxODBC Connect uses data compression for communication between the
client and server. This reduces the network traffic load and results in faster
roundtrips.

As a result, using mxODBC Connect is often faster then using mxODBC
together with a client side ODBC driver.

6.2 Differences and Limitations

6.2.1 Parameter Data Types

Since mxODBC Connect runs all database operations on the server side, it
has to transfer the Python objects passed as parameters to the
cursor.execute*() methods (and other methods accepting arbitrary
objects) over the network in serialized form.

This operation will only succeed for basic pickleable Python types
(Unicode, string, numbers, etc.) as well as eGenix mxDateTime instances,
since the server only provides support for these types.

Other objects types, such as user-defined subclasses, cannot be
unserialized on the server side and thus may result in mxODBC Connect
exceptions to be raised.

In order to work around this limitation, please make sure that the
parameter values you pass to the cursor.execute*() methods only use
supported data types.

 No support for Python 2.7 memoryviews

Unfortunately and unlike many other basic Python types, Python 2.7
memoryviews cannot be pickled. This is a limitation of Python, not
mxODBC Connect.

As a result, they cannot be used as parameters to cursor.execute*()
methods and are not available for passing data to the server database.

82

6. Differences between mxODBC and mxODBC Connect

6.2.2 Garbage collection and closing of connections /
cursors

mxODBC Connect Client manages a cache of objects in order to increase
performance and provide more reliability.

Due to this cache, garbage collection of e.g. database connection or cursor
objects may not directly result in the objects to get implicitly closed.

This may result in a situation where e.g. connections are kept open on the
server side longer than necessary and even result in the application hitting a
database connection license limit on the server more often than necessary.

You can easily prevent this, by explicitly closing cursor and connection
objects after use.

Example:

connection = session.DriverConnect(…)
cursor = connection.cursor()
do some work with cursor
cursor.close()
cursor = None
connection.close()
connection = None

6.2.3 Exceptions

Exception classes must be imported from mx.ODBCConnect.Error instead
of mx.ODBC.Error, which may require slight modification to existing
application code. Unlike in mxODBC, the exception classes are not
available via the top-level mx.ODBCConnect module, ie.
mx.ODBCConnect.ProgrammingError does not resolve to the
ProgrammingError exception class.

Note that all exceptions are subclassed from the same built-in exception
classes as their mxODBC equivalents, so generic error handlers will work
without modifications.

The client should be modified to catch the new exceptions of the mxODBC
Connect Client API, such as loss of network connection. However, this is
only required, if you need advanced connection handling and automatic
fail-over.

83

mxODBC Connect - Python Database Interface

6.2.4 Converter Functions

Converter functions are not supported. They may be supported by a later
version of mxODBC Connect.

6.2.5 Error Handlers

Error handlers are not fully supported. They may be supported by a later
version of mxODBC Connect.

It is possible to register an error handler with mxODBC Connect Client, but
the exceptions will still always be raised. This is mainly due to the fact that
error handlers run on the client side.

 Database Warnings

For the most common case of using error handlers, ignoring database
warnings, you can use the .warningformat connection/cursor attribute
which allows choosing from different mechanisms to e.g. ignore warnings
on the server side.

Example:

from mx.ODBCConnect.Client import ServerSession
Setup a server session
session = ServerSession(config_file='client-config-windows.ini')
Connect to the mxODBC Connect Server
server = session.open()
Connect to a database
connection = server.DriverConnect('DSN=sqlserver2008;UID=sa')
Ignore warnings issued by the database (e.g. for context
switches)
connection.warningformat = server.IGNORE_WARNINGFORMAT

Please see the Database Warning section in the mxODBC documentation
for more details.

6.2.6 Server-side Exceptions

When printing exceptions raised on the server-side, the client will only
display a partial traceback, containing the client side traceback information.
All other exception information is preserved.

Note that server side exceptions are logged by mxODBC Connect Server -
including their full traceback.

84

6. Differences between mxODBC and mxODBC Connect

This limitation can also be considered a feature, since it prevents accidental
leakage of confidential information from the server to the client side.

6.2.7 RowFactory Helper Module

As part of the upgrade to the mxODBC 3.3 API, mxODBC Connect 2.1 also
supports the new cursor.row and cursor.rowfactory attributes. Just
like mxODBC 3.3, mxODBC Connect also comes with a new helper
module to simplify use of these attributes.

In mxODBC, the module is available as mx.ODBC.Misc.RowFactory.
mxODBC Connect comes with the same module, but as
mx.ODBCConnect.Misc.RowFactory.

Unlike the mxODBC subpackage modules, which are accessed via a proxy
to the server side, the RowFactory module exists on the client side as
importable module, even without server connection. To stay compatible to
the mxODBC API, the module is additionally available via the subpackage
module object as .RowFactory attribute.

All row class processing happens on the client side, so the added overhead
is for setting up the row classes is minimal.

6.2.8 Using the cursor.row attribute

With the RowFactory module available, it is easy to create custom row
classes for a given result set.

The only requirement is having a cursor with prepared or executed query
(so that the cursor.description information is available).

Example:

from mx.ODBCConnect.Client import ServerSession

Setup a server session
session = ServerSession(config_file='client-config-unix.ini')

Connect to the mxODBC Connect Server
server = session.open()

Connect to a database
db = server.DriverConnect('DSN=…;UID=sa;PWD=…')
print 'Connected to %s %s' % (db.dbms_name, db.dbms_version)

Create cursor
cursor = db.cursor()

85

mxODBC Connect - Python Database Interface

Create a cursor with information about the result set
cursor.execute('select * from mytable')

Create the row class
MyTableRow = server.RowFactory.TupleRowFactory(cursor)

Fetch the data using MyTableRow objects
cursor.row = MyTableRow
rows = cursor.fetchall()

In the above example, mxODBC Connect will fetch all rows as MyTableRow
instances, which are Python tuple subclasses with added named based
access to the columns, so that you can write row[0], just as well as
row['id'] or row.id (assuming that the first column of the result is
named 'id'.

 Pickling Dynamic Row Classes

Note that MyTableRow instances are not pickleable. The reason is that
pickle cannot associate a module and attribute with them to place into the
pickle information.

If you want to pickle such row objects, you have to add the needed
information to the generated class:

Adjust the MyTableRow class so that pickle can find the
right module and class
MyTableRow.__name__ = 'MyTableRow'
MyTableRow.__module__ = __name__

In this example, __name__ refers to the module which holds the attribute
to the row class.

6.2.9 Using the cursor.rowfactory attribute

If you don't know the result set layout in advance, you can use the row
class factory functions of the RowFactory module to have them build the
row classes for you when the first row is fetched from the database:

Example:

from mx.ODBCConnect.Client import ServerSession

Setup a server session
session = ServerSession(config_file='client-config-unix.ini')

Connect to the mxODBC Connect Server
server = session.open()

Connect to a database
db = server.DriverConnect('DSN=…;UID=sa;PWD=…')
print 'Connected to %s %s' % (db.dbms_name, db.dbms_version)

86

6. Differences between mxODBC and mxODBC Connect

Create cursor
cursor = db.cursor()

Fetch the data using MyTableRow objects
cursor.rowfactory = server.RowFactory.ListRowFactory

Create result set
cursor.execute('select * from mytable')
rows = cursor.fetchall()

In the above example, the result set layout information is not available at
the time the cursor.rowfactory is set.

mxODBC Connect will call the cursor.rowfactory function with the
cursor as first argument just before fetching the first row of the result set.

Using cursor.rowfactory results in much better performance compared
to other solutions, which build e.g. namedtuples for each and every row,
since the class building only has to be done once per result set.

6.2.10 Using iterators/generators with
cursor.executemany()

mxODBC 3.3 introduced support for iterators/generators as argument for
cursor.executemany().

Since iterators and generators are polled for more information and cannot
be pickled, mxODBC Connect processes the data in chunks by reading up
to 2048 data rows from the iterator/generator and sending the request to
the server side.

To make this customizable, mxODBC Connect provides a special extra
parameter for cursor.executemany(), which is not available in mxODBC:

cursor.executemany(sqlcmd, batch, direct=0,
parametertypes=None, chunksize=2048)

 …

For iterators and generators, a keyword parameter chunksize may be
given to specify the number of rows to send to the server in a single
chunk. It defaults to 2048 rows.

When seeing an iterator or generator as batch parameter, mxODBC
Connect will read data from it in chunks of chunksize and then process
the .executemany() call on this chunk in one request to the server side.

87

mxODBC Connect - Python Database Interface

7. Troubleshooting
Please always consult the FAQs before contacting eGenix Support
(support@egenix.com).

7.1 Frequently Asked Questions (FAQ)

This section lists frequently asked questions regarding mxODBC Connect.

7.1.1 Where can I find the server.log file on Windows ?

If you have installed the mxODBC Connect Server tray icon helper, you can
open this file using the tray icon's menu entry Show Log File.

The server.log file is located in the C:\<documents and settings>\<all
users>\<application data>\eGenix.com\mxODBC Connect Server\
directory (the exact names of the path components depend on your
Windows installation).

7.1.2 Where can I find the server.log file on Unix ?

It is located in the home directory of the mxodbc user, usually
/opt/eGenix/mxODBC-Connect-Server/.

7.1.3 The Windows installer stops with a message that a
file cannot be installed

This sometimes happens when you reinstall or update the mxODBC
Connect Server. Please try the following:

• Make sure that you have shutdown a possibly running mxODBC
Connect Server using the tray applet.

88

mailto:support@egenix.com

7. Troubleshooting

• Close the mxODBC Connect Server tray applet.

• Make sure that you have no running processes that start with
"mxODBC-Connect".

• Click on "Retry" in the installer message dialog.

If the problem persists, you will have to cancel the installation and restart
the system, before retrying the installation.

Since the mxODBC Connect Server runs as Windows service, it is possible
that a system process still references it or one of its DLLs.

7.1.4 mxODBC Connect Server for Windows doesn't start

If you have correctly installed the server licenses, but the server fails to
start, please have a look at the server.log file. See FAQ entry 7.1.1 for
details on how to open this log file.

The log should provide an explanation of what caused the startup failure.

Please make sure that:

• the configuration file doesn't have any errors, e.g. duplicate section
names, illegal values, mistyped option names, etc.

• the license files, configuration file and certificates are readable by
the service user

7.1.5 mxODBC Connect Server for Unix doesn't start

If you have correctly installed the server licenses, but the server fails to
start, please have a look at the server.log file. See FAQ entry 7.1.2 for
details on where this file is stored.

If the log file mentions a missing libodbc.so.1 or libiodbc.so.2 file , then the
server cannot find your ODBC manager installation.

Please check the following:

• You have one of iODBC or unixODBC installed.

89

mxODBC Connect - Python Database Interface

• You have installed the correct version of the eGenix mxODBC
Connect Server for your platform, ie. the x86 version for a 32-bit
Linux and the x64 version for a 64-bit Linux.

• The dynamic linker (usually ld.so) is setup to find the shared
libraries of the installed ODBC manager; ldconfig -p should list
the libodbc.so or libiodbc.so files.

• The mxodbc user account has permission to access the shared
library files.

7.1.6 Importing exceptions from mx.ODBC.Error fails (no
such module)

You have to import the mxODBC related exception classes from
mx.ODBCConnect.Error instead of mx.ODBC.Error when using mxODBC
Connect Client.

Simply search&replace your imports and insert 'Connect' in the
appropriate places.

7.1.7 Exceptions are not caught as expected at client
side

You have to import the mxODBC related exception classes from
mx.ODBCConnect.Error instead of mx.ODBC.Error when using mxODBC
Connect Client.

All exceptions imported from mx.ODBCConnect.Error are subclassed from
the same built-in exceptions as the original mxODBC ones.

7.1.8 Client cannot connect to the mxODBC Connect
Server.

• Ensure, that your mxODBC Connect Server is configured correctly
and the service or daemon runs without a fatal error.

• Check the server logs for connection attempts.

• Ensure that no firewall block the connection on either side.

90

7. Troubleshooting

• Check your client certificate if the server has client certificate
verification turned on.

7.1.9 Converter function has been set, but not called.

Converter functions are not supported in the current release of mxODBC
Connect. They might be supported by a later release.

Please report your problem to eGenix.com to let us know about your
requirements.

7.1.10 Error handlers don't seem to work.

Exception will always be raised, even if the error handlers don't reraised
them.

This is due to the fact that error handler must run on the client side and
therefore cannot influence how the mxODBC Connect Server handles in-
process error situations.

7.1.11 Printing exception tracebacks does not include the
server side.

Server-side exceptions with full tracebacks can be read in the server logs if
needed, e.g. to track down problems related to database ODBC drivers.

7.1.12 InterfaceError: Connection limit exceeded. Your
license allows 20 physical database connections.

This error is the result of having too many physical database connections
open on the server side.

Database connections on the server side are opened and closed following
the connect and close calls on the client side. However, in some cases, e.g.
due to errors in the client side application, these may not get called and
result in the connections to stay open on the server side.

91

mxODBC Connect - Python Database Interface

Please always explicitly close your client side database connections using
the connection object's .close() method.

Another situation where this may happen can occur when not explicitly
closing the ServerSession object on the client side or having this close
process fail due to network problems.

The server will only check client connections every few seconds, so the
connections may be kept open on the server side even though the client
application has already terminated.

If you frequently start client applications which don't close their
ServerSession object, this may result in the number of concurrently open
connections to reach the license limit, giving the above error message.

Please always explicitly close the ServerSession object using its
.close() method.

7.1.13 Error "Maximum number of sessions reached." with
unlimited connections license

If you are receiving errors from the server mentioning a maximum number
of sessions being reached, even though you have a license with unlimited
number of connections installed, you will have hit a configurable limit in
the server configuration that is intended to prevent denial of server attacks.

To resolve the issue, please change the server configuration to use a higher
limit for the parameter max_sessions in the [Activity] section of the
configuration. The default value is set to 400 sessions.

7.1.14 Client on different subnet than server cannot
connect to the server

The mxODBC Connect Server defaults to only allowing connections from
clients on the configured connection networks.

When a client on a different subnet tries to connect to the server, the
connection fails and the server.log file shows an error such as:

SessionManager: Client is not allowed to connect from
10.10.10.10:57086

In some cases, you may want to also allow clients on different networks
which are not directly connected to the server networks to connect. Please

92

7. Troubleshooting

see section 2.4.3 Server Connection Setup and the subsection "Allowing
connections from other networks" for details on how this can be achieved.

93

mxODBC Connect - Python Database Interface

8. Hints & Links to other Resources

8.1 More Sources of Information

There are several resources available online that should help you getting
started with ODBC. Here is a small list of links useful for further reading:

Microsoft MDAC Site

Microsoft is constantly developing new forms of database access. For a
close up on what they have come up recently take a look at their ODBC
site. Note that they now call their ODBC SDK "Microsoft Data Access
Components SDK" (MDAC). It does not only focus on ODBC but also on
OLE DB and ADO.

Note: If you are not happy about the size of the SDK download (over
31MB), you can also grab the older 3.0 SDK which might still be available
from a FTP server. Look for "odbc3sdk.exe" using e.g. FTP Search.

Microsoft also supports a whole range of (desktop) ODBC drivers for
various databases and file formats. These are available under the name
"ODBC Desktop Database Drivers" (search the MS web-site for the exact
URL) [wx1350.exe] and also included in the more up-to-date "Microsoft
Data Access Components" (MDAC) archive [mdac_typ.exe].

Microsoft ODBC Portal

This portal page has a few interesting links into the Microsoft ODBC site. If
you're looking for the latest SQL Server or Oracle ODBC drivers this is the
place to look first.

ODBC Documentation

The ODBC documentation is included in the free MS MDAC SDK which
you can download from their ODBC site.

List of ODBC drivers on the Python.org Wiki

94

http://msdn2.microsoft.com/en-us/data/aa937703.aspx
http://ftpsearch.lycos.com/
http://msdn2.microsoft.com/en-us/library/ms710252.aspx
http://msdn2.microsoft.com/en-us/library/ms714177.aspx
http://msdn2.microsoft.com/en-us/library/ms710252.aspx
https://wiki.python.org/moin/ODBCDrivers

8. Hints & Links to other Resources

A collection of available ODBC driver packages. This should be the first
place to look in case you are searching for OBDC connectivity to your
database.

SQLSummit List of ODBC drivers

This used to be a very useful collection of available ODBC driver packages.
Unfortunately, it is no longer maintained, so the above link points to the
last archived version.

95

https://web.archive.org/web/20140209203657/http://www.sqlsummit.com/ODBCVend.HTM

mxODBC Connect - Python Database Interface

9. Support
eGenix.com is providing commercial support for this package, including
adapting it to special needs for use in customer projects.

If you are interested in receiving information about this service please see
the eGenix.com Support Conditions.

96

http://www.egenix.com/files/python/eGenix-mx-Extensions.html

10. History & Changes

10. History & Changes
Please visit the product page on the eGenix.com website for the list of
changes.

97

http://www.egenix.com/products/python/mxODBCConnect/

mxODBC Connect - Python Database Interface

11. Copyright & License
© 1997-2000, Copyright by IKDS Marc-André Lemburg; All Rights
Reserved. mailto: mal@lemburg.com

© 2000-2015, Copyright by eGenix.com Software GmbH, Langenfeld,
Germany; All Rights Reserved. mailto: info@egenix.com

This software is covered by the eGenix.com Commercial License
Agreement, which is included in the following section 11.1. The text of the
license is also included as file "LICENSE" in the package's main directory.

The software also includes third party software which is covered by other
licenses. The text of those licenses is included in the following section xxx.

Please note that using this software is not free of charge. You may use the
software during an evaluation period as specified in the license, but
subsequent use requires the ownership of a "Proof of Authorization"
which you can buy online from eGenix.com.

Please see the eGenix.comWebsite for details about the license ordering
process.

By downloading, copying, installing or otherwise using the software, you
agree to be bound by the terms and conditions of the following eGenix.com
Commercial License Agreement and the terms and conditions of the third-
party licenses listed in section 11.2 Third-Party Licenses.

11.1 eGenix.com Commercial License
Agreement

98

mailto:mal@lemburg.com
mailto:info@egenix.com
http://www.egenix.com/
http://www.egenix.com/

11. Copyright & License

EGENIX.COM COMMERCIAL LICENSE AGREEMENT

Version 1.3.0

1. Introduction

This “License Agreement” is between eGenix.com Software, Skills and
Services GmbH (“eGenix.com”), having an office at Pastor-Loeh-Str. 48, D-
40764 Langenfeld, Germany, and the Individual or Organization
(“Licensee”) accessing and otherwise using this software in source or
binary form and its associated documentation (“the Software”).

2. Terms and Definitions

The “Software” covered under this License Agreement includes without
limitation, all object code, source code, help files, publications,
documentation and other programs, products or tools that are included in
the official “Software Distribution” available from eGenix.com.

The “Proof of Authorization” for the Software is a written and signed notice
from eGenix.com providing evidence of the extent of authorizations the
Licensee has acquired to use the Software and of Licensee’s eligibility for
future upgrade program prices (if announced) and potential special or
promotional opportunities. As such, the Proof of Authorization becomes
part of this License Agreement.

Installation of the Software (“Installation”) refers to the process of
unpacking or copying the files included in the Software Distribution to an
Installation Target.

“Installation Target” refers to the target of an installation operation. Targets
are defined, among other parameters, in terms of the following definitions:

1) “CPU” refers to a central processing unit which is able to store
and/or execute the Software (a server, personal computer, virtual
machine, or other computer-like device) using at most two (2)
processors,

2) “Site” refers to a single site of a company,
3) “Corporate” refers to an unlimited number of sites of the company,
4) “Developer CPU” refers to a single CPU used by at most one (1)

developer.

Additional terms may be defined as part of the Proof of Authorization.

99

mxODBC Connect - Python Database Interface

When installing the Software on a server CPU for use by other CPUs in a
network, Licensee must obtain a License for the server CPU and for all
client CPUs attached to the network which will make use of the Software
by copying the Software in binary or source form from the server into their
CPU memory. If a CPU makes use of more than two (2) processors,
Licensee must obtain additional CPU licenses to cover the total number of
installed processors. The number of cores per processor does not count
towards this license limitation. Virtual machines always count as one (1)
CPU. If a Developer CPU is used by more than one developer, Licensee
must obtain additional Developer CPU licenses to cover the total number of
developers using the CPU.

“Commercial Environment” refers to any application environment which is
aimed at directly or indirectly generating profit. This includes, without
limitation, for-profit organizations, private educational institutions, work as
independent contractor, consultant and other profit generating relationships
with organizations or individuals. Governments and related agencies or
organizations are also regarded as being Commercial Environments.

“Non-Commercial Environments” are all those application environments
which do not directly or indirectly generate profit. Public educational
institutions and officially acknowledged private non-profit organizations are
regarded as being Non-Commercial Environments in the aforementioned
sense.

“Educational Environments“ are all those application environments which
directly aim at educating children, pupils or students. This includes, without
limitation, class room installations and student server installations which
are intended to be used by students for educational purposes. Installations
aimed at administrational or organizational purposes are not regarded as
Educational Environment.

3. License Grant

Subject to the terms and conditions of this License Agreement, eGenix.com
hereby grants Licensee a non-exclusive, world-wide license to

1) use the Software to the extent of authorizations Licensee has
acquired and

2) distribute, make and install copies to support the level of use
authorized, providing Licensee reproduces this License Agreement
and any other legends of ownership on each copy, or partial copy, of
the Software.

If Licensee acquires this Software as a program upgrade, Licensee’s
authorization to use the Software from which Licensee upgraded is
terminated.

100

11. Copyright & License

Licensee will ensure that anyone who uses the Software does so only in
compliance with the terms of this License Agreement.

Licensee may not

1) use, copy, install, compile, modify, or distribute the Software except
as provided in this License Agreement;

2) reverse assemble, reverse engineer, reverse compile, or otherwise
translate the Software except as specifically permitted by law without
the possibility of contractual waiver; or

3) rent, sublicense or lease the Software.

4. Authorizations

The extent of authorization depends on the ownership of a Proof of
Authorization for the Software.

Usage of the Software for any other purpose not explicitly covered by this
License Agreement or granted by the Proof of Authorization is not
permitted and requires the written prior permission from eGenix.com.

5. Modifications

Software modifications may only be distributed in form of patches to the
original files contained in the Software Distribution.

The patches must be accompanied by a legend of origin and ownership and
a visible message stating that the patches are not original Software
delivered by eGenix.com, nor that eGenix.com can be held liable for
possible damages related directly or indirectly to the patches if they are
applied to the Software.

6. Experimental Code or Features

The Software may include components containing experimental code or
features which may be modified substantially before becoming generally
available.

These experimental components or features may not be at the level of
performance or compatibility of generally available eGenix.com products.
eGenix.com does not guarantee that any of the experimental components
or features contained in the eGenix.com will ever be made generally
available.

101

mxODBC Connect - Python Database Interface

7. Expiration and License Control Devices

Components of the Software may contain disabling or license control
devices that will prevent them from being used after the expiration of a
period of time or on Installation Targets for which no license was obtained.

Licensee will not tamper with these disabling devices or the components.
Licensee will take precautions to avoid any loss of data that might result
when the components can no longer be used.

8. NO WARRANTY

eGenix.com is making the Software available to Licensee on an “AS IS”
basis. SUBJECT TO ANY STATUTORY WARRANTIES WHICH CAN NOT BE
EXCLUDED, EGENIX.COM MAKES NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, EGENIX.COM MAKES NO AND DISCLAIMS ANY
REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE
WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

9. LIMITATION OF LIABILITY

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO
EVENT SHALL EGENIX.COM BE LIABLE TO LICENSEE OR ANY OTHER
USERS OF THE SOFTWARE FOR (I) ANY INCIDENTAL, SPECIAL, OR
CONSEQUENTIAL DAMAGES OR LOSS (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER
PECUNIARY LOSS) AS A RESULT OF USING, MODIFYING OR
DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF; OR (II) ANY AMOUNTS IN
EXCESS OF THE AGGREGATE AMOUNTS PAID TO EGENIX.COM UNDER
THIS LICENSE AGREEMENT DURING THE TWELVE (12) MONTH PERIOD
PRECEEDING THE DATE THE CAUSE OF ACTION AROSE.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE
ABOVE EXCLUSION OR LIMITATION MAY NOT APPLY TO LICENSEE.

10. Termination

This License Agreement will automatically terminate upon a material breach
of its terms and conditions if not cured within thirty (30) days of written

102

11. Copyright & License

notice by eGenix.com. Upon termination, Licensee shall discontinue use
and remove all installed copies of the Software.

11. Indemnification

Licensee hereby agrees to indemnify eGenix.com against and hold harmless
eGenix.com from any claims, lawsuits or other losses that arise out of
Licensee’s breach of any provision of this License Agreement.

12. Third Party Rights

Any software or documentation in source or binary form provided along
with the Software that is associated with a separate license agreement is
licensed to Licensee under the terms of that license agreement. This License
Agreement does not apply to those portions of the Software. Copies of the
third party licenses are included in the Software Distribution.

13. High Risk Activities

The Software is not fault-tolerant and is not designed, manufactured or
intended for use or resale as on-line control equipment in hazardous
environments requiring fail-safe performance, such as in the operation of
nuclear facilities, aircraft navigation or communication systems, air traffic
control, direct life support machines, or weapons systems, in which the
failure of the Software, or any software, tool, process, or service that was
developed using the Software, could lead directly to death, personal injury,
or severe physical or environmental damage (“High Risk Activities”).

Accordingly, eGenix.com specifically disclaims any express or implied
warranty of fitness for High Risk Activities.

Licensee agree that eGenix.com will not be liable for any claims or damages
arising from the use of the Software, or any software, tool, process, or
service that was developed using the Software, in such applications.

14. General

Nothing in this License Agreement affects any statutory rights of consumers
that cannot be waived or limited by contract.

Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between eGenix.com
and Licensee.

103

mxODBC Connect - Python Database Interface

If any provision of this License Agreement shall be unlawful, void, or for any
reason unenforceable, such provision shall be modified to the extent
necessary to render it enforceable without losing its intent, or, if no such
modification is possible, be severed from this License Agreement and shall
not affect the validity and enforceability of the remaining provisions of this
License Agreement.

This License Agreement shall be governed by and interpreted in all respects
by the law of Germany, excluding conflict of law provisions. It shall not be
governed by the United Nations Convention on Contracts for International
Sale of Goods.

This License Agreement does not grant permission to use eGenix.com
trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party.

The controlling language of this License Agreement is English. If Licensee
has received a translation into another language, it has been provided for
Licensee’s convenience only.

15. Agreement

By downloading, copying, installing or otherwise using the Software,
Licensee agrees to be bound by the terms and conditions of this License
Agreement.

For question regarding this License Agreement, please write to:

eGenix.com Software, Skills and Services GmbH

Pastor-Loeh-Str. 48

D-40764 Langenfeld

Germany

104

11. Copyright & License

EGENIX.COM PROOF OF AUTHORIZATION

1 CPU License (Example)

This is an example of a "Proof of Authorization" for a 1 CPU License. These
proofs are either wet-signed by the eGenix.com staff or digitally PGP-signed
using an official eGenix.com PGP-key.

1. License Grant

eGenix.com Software, Skills and Services GmbH (“eGenix.com”), having an
office at Pastor-Loeh-Str. 48, D-40764 Langenfeld, Germany, hereby grants
the Individual or Organization (“Licensee”)

Licensee: <name of the licensee>

a non-exclusive, world-wide license to use the software listed below in
source or binary form and its associated documentation (“the Software”)
under the terms and conditions of this License Agreement and to the
extent authorized by this Proof of Authorization.

2. Covered Software

Software Name: <product name>

Software Version: <product version>

 (including all patch level releases)

Software Distribution: As officially made available by

 eGenix.com on http://www.egenix.com/

Operating System: any compatible operating system

3. Authorizations

eGenix.com hereby authorizes Licensee to copy, install, compile, modify
and use the Software on the following Installation Targets under the terms
of this License Agreement.

Installation Targets: one (1) CPU

105

http://www.egenix.com/

mxODBC Connect - Python Database Interface

Use of the Software for any other purpose or redistribution IS NOT
PERMITTED BY THIS PROOF OF AUTHORIZATION.

4. Proof

This Proof of Authorization was issued by

<name>, <title>

Langenfeld, <date>

Proof of Authorization Key:

<license key>

106

11. Copyright & License

EGENIX.COM PROOF OF AUTHORIZATION

1 Developer CPU License (Example)

This is an example of a "Proof of Authorization" for a 1 Developer CPU
License. These proofs are either wet-signed by the eGenix.com staff or
digitally PGP-signed using an official eGenix.com PGP-key.

5. License Grant

eGenix.com Software, Skills and Services GmbH (“eGenix.com”), having an
office at Pastor-Loeh-Str. 48, D-40764 Langenfeld, Germany, hereby grants
the Individual or Organization (“Licensee”)

Licensee: <name of the licensee>

a non-exclusive, world-wide license to use the software listed below in
source or binary form and its associated documentation (“the Software”)
under the terms and conditions of this License Agreement and to the extent
authorized by this Proof of Authorization.

6. Covered Software

Software Name: <product name>

Software Version: <product version>

 (including all patch level releases)

Software Distribution: As officially made available by

 eGenix.com on http://www.egenix.com/

Operating System: any compatible operating system

7. Authorizations

7.1 Application Development

eGenix.com hereby authorizes Licensee to copy, install, compile, modify
and use the Software on the following Developer Installation Targets for the
purpose of developing products using the Software as integral part.

107

http://www.egenix.com/

mxODBC Connect - Python Database Interface

Developer Installation Targets: one (1) Developer
CPU

7.2 Redistribution

eGenix.com hereby authorizes Licensee to redistribute the Software
bundled with a product developed by Licensee on the Developer
Installation Targets ("the Product") subject to the terms and conditions of
this License Agreement for installation and use in combination with the
Product on the following Redistribution Installation Targets, provided that:

1. Licensee shall not and shall not permit or assist any third party to
sell or distribute the Software as a separate product;

2. Licensee shall not and shall not permit any third party to

i. market, sell or distribute the Software to any end user
except subject to the terms and conditions of this License
Agreement,

ii. rent, sell, lease or otherwise transfer the Software or any
part thereof or use it for the benefit of any third party,

iii. use the Software outside the Product or for any other
purpose not expressly licensed hereunder;

3. the Product does not provide functions or capabilities similar to
those of the Software itself, i.e. the Product does not introduce
commercial competition for the Software as sold by eGenix.com;

4. Licensee has obtained Developer CPU Licenses for all developers
and CPUs used in developing the Product.

Redistribution Installation Targets:

any number of CPUs capable of running the Product and the Software

8. Proof

This Proof of Authorization was issued by

<name>, <title>

Langenfeld, <date>

108

11. Copyright & License

109

Proof of Authorization Key:

<license key>

11.2 Third-Party Licenses

eGenix.com mxODBC Connect Server contains the following open-source
third-party software components:

• Python - Object Oriented Programming Language

• pyOpenSSL - Python Interface to OpenSSL

• OpenSSL - Secure Socket Layer (SSL) Implementation

On Windows, the mxODBC Connect Server also uses:

• pywin32 - Python for Windows extensions

• Microsoft Visual C++ 9.0 Runtime DLLs - These may only be used
with the mxODBC Connect Server installation.

• Silk Icon Set - Icons used for the application on Windows

eGenix.com mxODBC Connect Client can optionally use and/or include
following third party software components:

• pyOpenSSL - Python Interface to OpenSSL

• OpenSSL - Secure Socket Layer (SSL) Implementation

For copyrights, notices and license texts please see the eGenix.com Third-
Party Licenses 2.0 document which is included in the product
documentation directory and also available from the eGenix.com web-site.

http://www.egenix.com/products/python/mxODBCConnect/

	Introduction
	Technical Overview
	Security
	Scope

	mxODBC Connect Server Installation
	Upgrading mxODBC Connect Server
	Upgrading from 2.1.4 to 2.1.5
	Addition of allow_clients configuration variable

	Upgrading from 2.1.3 to 2.1.4
	Addition of the BinaryNull singleton
	Changes to the SSL support

	Upgrading from 2.1.2 to 2.1.3
	Increased default RSA key length
	Changes to the SSL support

	Upgrading from 2.1.1 to 2.1.2
	Changes to the SSL support

	Upgrading from 2.1.0 to 2.1.1
	Changes to the SSL support

	Upgrading from 2.0 to 2.1
	Changes to user authentication
	Update to the mxODBC 3.3 API
	ODBC Driver/Manager Compatibility Enhancements

	Upgrading from 2.0.x to 2.0.4
	New connection_cursortype server configuration parameter
	Enhance MS SQL Server and IBM DB2 Fetch Performance

	Upgrading from 1.0 to 2.0
	Windows Service Changes
	Configuration File Changes
	Security Related Changes
	Network Related Changes
	mxODBC Feature Changes

	mxODBC Connect Server Installation on Windows
	Prerequisites
	Procedure
	Step-by-step Installation
	Server Tray Icon
	Configuring the Firewall
	Edit the Configuration
	Controlling Automatic Startup of the Server
	Troubleshooting

	Uninstall
	Reinstallation or upgrading

	mxODBC Connect Server Installation on Unix
	Prerequisites
	Procedure
	Step-by-step Installation
	Server User Account and Group
	Configuring the Firewall
	Edit the Configuration
	Starting/Stopping the Server
	Controlling Automatic Startup of the Server
	Troubleshooting

	Uninstallation
	Reinstallation or upgrading

	mxODBC Connect Server Configuration
	mxODBC Connect Configuration File Syntax
	mxODBC Connect Server Configuration File
	[Connection_Name]
	[Authentication]
	[Session]
	[Unix]
	[Windows]
	[Activity]
	[Logging]

	Server Connection Setup
	Basic configuration
	Adding SSL support is easy
	Even more secure: SSL-only connections
	Listening on more than one port
	Allowing connections from other networks

	Configuring Certificate Based Authentication
	Using a file with client certificates
	Using a directory with client certificates
	Using a list of SHA1 hex digests in the configuration file
	Using a file with SHA1 digests

	Configuring User Authentication
	Authentication Protocol
	Password File authorized-users.txt
	Using the password-tool
	Command-line Options of the password-tool
	Interactive Mode of the password-tool

	ODBC Driver Configuration Hints
	Setting up the optimal communication technique
	Disabling options that are not needed for local connections

	mxODBC Connect Client Installation
	Upgrading mxODBC Connect Client
	Upgrading from 2.0 to 2.1
	mxODBC 3.3 API
	Stored Procedures
	User Customizable Row Objects
	Fast Cursor Types
	More new Features
	mxODBC Connect API Enhancements
	Asynchronous Processing
	Security Enhancements

	Upgrading from 2.0.x to 2.0.4
	New connection_cursortype server configuration parameter

	Upgrading from 2.0.x to 2.0.3
	New .cursortype Attribute
	Enhance MS SQL Server and IBM DB2 Fetch Performance

	Upgrading from 1.0 to 2.0
	Network Related Changes
	Configuration File Changes
	mxODBC Feature Changes

	mxODBC Connect Client Installation on Windows
	Prerequisites
	Procedure
	Uninstall

	mxODBC Connect Client Installation on Unix
	Prerequisites
	Installation using prebuilt package archives
	System-wide Installation
	User Installation

	Uninstall when using prebuilt package archives
	Installation using egg archives
	Uninstall when using egg package archives

	Using mxODBC Connect
	Architecture of mxODBC Connect
	mxODBC Connect Client Configuration
	mxODBC Connect Client Configuration File Format
	[Connection_Name]
	[Communication]
	[Authentication]
	[Session]
	[Logging]
	[Integration]

	Configuration Dictionary Format
	mxODBC Connect Client Configuration Hints

	mxODBC Connect Client Example
	Client Configuration
	Connecting to the mxODBC Connect Server
	Storing ServerSessions as module globals

	Exception Handling

	Testing
	
	test.pyc Options

	mxODBC Connect Client Python API
	API Design
	Multi-Threaded Applications
	Recommended Setups
	Logging

	gevent Support
	Import Order
	gevent Monkey-Patching

	mxODBC Connect Client ServerSession Object
	mxODBC Connect Client Errors
	Server Side Errors
	mxODBC Connect Error Module
	Session Errors

	mxODBC Connect Constants Module
	Available Constants

	mxODBC API

	Differences between mxODBC and mxODBC Connect
	Additional Features in mxODBC Connect
	Improved portability
	Improved data type support
	Improved Scalability
	Asynchronous Execution Support using gevent
	Automatic Fail-over
	Data compression

	Differences and Limitations
	Parameter Data Types
	No support for Python 2.7 memoryviews

	Garbage collection and closing of connections / cursors
	Exceptions
	Converter Functions
	Error Handlers
	Database Warnings

	Server-side Exceptions
	RowFactory Helper Module
	Using the cursor.row attribute
	Pickling Dynamic Row Classes

	Using the cursor.rowfactory attribute
	Using iterators/generators with cursor.executemany()

	Troubleshooting
	Frequently Asked Questions (FAQ)
	Where can I find the server.log file on Windows ?
	Where can I find the server.log file on Unix ?
	The Windows installer stops with a message that a file cannot be installed
	mxODBC Connect Server for Windows doesn't start
	mxODBC Connect Server for Unix doesn't start
	Importing exceptions from mx.ODBC.Error fails (no such module)
	Exceptions are not caught as expected at client side
	Client cannot connect to the mxODBC Connect Server.
	Converter function has been set, but not called.
	Error handlers don't seem to work.
	Printing exception tracebacks does not include the server side.
	InterfaceError: Connection limit exceeded. Your license allows 20 physical database connections.
	Error "Maximum number of sessions reached." with unlimited connections license
	Client on different subnet than server cannot connect to the server

	Hints & Links to other Resources
	More Sources of Information

	Support
	History & Changes
	Copyright & License
	eGenix.com Commercial License Agreement
	Third-Party Licenses

