
On-disk B+Tree Database Kit
for Python

VVVersion 3.2 eerrssiioonn 33..22

mmxxBBeeeeBBaassee

Copyright  1998-2000 by IKDS Marc-André Lemburg, Langenfeld
Copyright  2000-2011 by eGenix.com GmbH, Langenfeld

All rights reserved. No part of this work may be reproduced or used in a any form or
by any means without written permission of the publisher.

All product names and logos are trademarks of their respective owners.

The product names "mxBeeBase", "mxCGIPython", "mxCounter", "mxCrypto",
"mxDateTime", "mxHTMLTools", "mxIP", "mxLicenseManager", "mxLog", "mxNumber",
"mxODBC", "mxODBC Connect", "mxODBC Zope DA", "mxObjectStore", "mxProxy",
"mxQueue", "mxStack", "mxTextTools", "mxTidy", "mxTools", "mxUID", "mxURL",
"mxXMLTools", "eGenix Application Server", "PythonHTML", "eGenix" and
"eGenix.com" and corresponding logos are trademarks or registered trademarks of
eGenix.com GmbH, Langenfeld

Printed in Germany.

Contents

Contents

1. Introduction .. 1
1.1 Limitations... 1

2. mx.BeeBase.BeeDict Module ... 2
2.1 BeeDict Objects .. 2

2.1.1 BeeDict Object Constructors... 3
2.1.2 BeeDict Object Methods... 3
2.1.3 BeeDict Object Attributes.. 6

2.2 BeeDictCursor Objects.. 6
2.2.1 BeeDictCursor Object Constructors .. 7
2.2.2 BeeDictCursor Object Methods .. 7
2.2.3 BeeDictCursor Object Attributes ... 8

2.3 BeeStringDict Objects ... 8
2.3.1 BeeStringDict Object Constructors.. 8
2.3.2 BeeStringDict Object Methods.. 9
2.3.3 BeeStringDict Object Attributes... 11

2.4 BeeStringDictCursor Objects... 12
2.4.1 BeeStringDictCursor Object Constructors 12
2.4.2 BeeStringDictCursor Object Methods 12
2.4.3 BeeStringDictCursor Object Attributes 13

2.5 BeeFixedLengthStringDict Objects... 13
2.5.1 Relationship between BeeFixedLengthStringDict and
BeeStringDict .. 13
2.5.2 BeeFixedLengthStringDict Object Constructors 14
2.5.3 BeeFixedLengthStringDict Object Methods 14
2.5.4 BeeFixedLengthStringDict Object Attributes.............................. 14

mxBeeBase - On-disk B+Tree Database Kit for Python

2.6 Functions... 15
2.7 Constants .. 15

3. mx.BeeBase.BeeStorage Module .. 16

4. mx.BeeBase.BeeIndex Module ... 17

5. Examples of Use .. 18

6. Package Structure .. 19

7. Support ... 20

8. Copyright & License .. 21

1. Introduction

1. Introduction

mxBeeBase is a high performance construction kit for disk based indexed
databases. It offers components which you can plug together to easily build
your own custom mid-sized databases.

The two basic building blocks in mxBeeBase are storage and index. Storage
is implemented as variable record length data storage with integrated data
protection features, automatic data recovery and locking for multi process
access. Indexes use a high performance optimized B+Tree implementation
built on top of Thomas Niemann's Cookbook B+Tree implementation.

Note:
This documentation is still incomplete. The software itself has been in use
for quite a while, but the documentation still needs to be completed. For
now, all we can offer you is to read the code which is well documented.

1.1 Limitations

The current storage size limit is sizeof(long) which gives you an address
range of around 2GB on 32-bit platforms and a few TB on 64-bit platforms.
The number of items in the index(es) is limited by sizeof(int).

BeeDict index files are also not portable between 32-bit and 64-bit
platforms.

Windows x64 is currently not supported. Even though mxBeeBase will
compile on Windows x64 with warnings and the resulting code will work
most of the time, there are cases where the implementation can cause
segfaults due to the way C integers and longs are sized on Windows x64.

1

http://epaperpress.com/

mxBeeBase - On-disk B+Tree Database Kit for Python

2. mx.BeeBase.BeeDict Module

The mx.BeeBase.BeeDict module provides three high level on-disk
dictionary implementations. The first (BeeDict) can work with arbitrary
hashable key objects, the second (BeeStringDict) uses limited sized strings
as basis providing slightly better performance and the third
(BeeFixedLengthStringDict) uses fixed length strings which may also contain
\0 characters. All variants need pickleable Python objects as keys and
values.

Data transfer to and from the dictionaries is done in the same way as for in-
memory dictionaries, e.g. d['key'] = 1; print d['key']; del
d['key], so usage should be mostly transparent to Python programs using
either in-memory or on-disk dictionaries.

There are a few differences to keep in mind:

• Not all dictionary methods are implemented.

• In-place modifications of mutable values, such as lists or
dictionaries, are not automatically written to the on-disk dictionary.
You have to explicitly reassign the value to mark the entry as
modified: listvalue = d['key']; listvalue.append(1);
d['key'] = listvalue.

• Since on-disk dictionaries tend to be large, the implementations
provide the Python iterator API which allows iterating over the
complete dictionary without loading the complete data into
memory. In Python 2.2 and up, you can use 'for key, value in
beedict:' for iteration. In Python 2.1 and below, use 'for key,
value in beedict.iteritems():' instead.

2.1 BeeDict Objects

BeeDict objects are on-disk dictionaries which use a hash-to-address index.
Both Keys and values must be pickleable and can have arbitrary size (keys
shouldn't be too long though); keys have to be hashable.

Hash collisions are treated by sequential reads of all records with the same
hash value and testing for equality of keys. This can be expensive !

2

2. mx.BeeBase.BeeDict Module

BeeDicts use a BeeStorage.BeeKeyValueStorage instance as storage object
and a BeeIndex.BeeIntegerIndex instance as index object.

Calling len() on a BeeDict object will raise an Error in case
uncommitted changes exist.

2.1.1 BeeDict Object Constructors

BeeDict objects are constructed using:

BeeDict(name, min_recordsize=0, readonly=0, recover=0,
autocommit=0, validate=0, maxcachesize=None)

Create an instance using name as basename for the data and index files.
Two files will be created: name.dat and name.idx.

min_recordsize is passed to the BeeStorage as indicator of the
minimum size for data records. readonly can be set to true to open the
files in read-only mode, preventing any disk modifications.

To open the dictionary in recovery mode, pass a keyword recover=1.
Then run .recover() and reopen using the normal settings. The
AutoRecover() wrapper can take care of this action for you
automatically.

If autocommit is true the cache control will do an automatic .commit()
whenever the transaction log overflows.

If validate is true, the dictionary will run a validation check after
having successfully opened storage and index. RecreateIndexError or
RecoverError exceptions could be raised in case inconsistencies are
found.

maxcachesize defines the maximum size of the in-memory transaction
cache. It defaults to MAXCACHESIZE if not given.

2.1.2 BeeDict Object Methods

BeeDict objects have the following methods:

.flush()

Flush buffers to disk.

.close()

Flush buffers and close.

This does not issue a .commit(), so the current transaction is rolled
back.

3

mxBeeBase - On-disk B+Tree Database Kit for Python

.commit()

Commits all changes and starts a new transaction.

.rollback()

Rolls back the current transaction. All changes are undone.

.changed()

Return true in case the current transaction includes changes to the
database, false otherwise.

.has_key()

Check if the dictionary has an item indexed by key.

Successfully found items are put in the cache for fast subsequent access.

.get(key,default=None)

Get item indexed by key from the dictionary or default if no such item
exists.

This first tries to read the item from cache and reverts to the disk
storage if it is not found.

.cursor(key=FirstKey, default=None)

Return a BeeDictCursor instance for the dictionary.

If key is given, the cursor is positioned on that key in the dictionary.
Otherwise, the first entry in the dictionary is used which guarantees that
all entries are scanned.

In case the key is not found, default is returned instead.

Note that cursors operate with the data on disk meaning that any
uncommitted changes will not be seen by the cursor.

.garbage()

Determine the amount of garbage in bytes that has accumulated in the
storage file.

This amount would be freed if .collect() were run.

.collect()

Run the storage garbage collector.

Storage collection can only be done for writeable dictionaries and then
only if the current transaction does not contain any pending changes.

This can take a while depending on the size of the dictionary.

.recover()

Recover all valid records and recreate the index.

4

2. mx.BeeBase.BeeDict Module

.keys()

Return a list of keys.

The method does not load any data into the cache, but does take notice
of uncommitted changes.

For an iterative approach which uses less memory, see the .iterkeys()
method.

.values()

Return a list of values.

The method does not load any data into the cache, but does take notice
of uncommitted changes.

For an iterative approach which uses less memory, see the .itervalues()
method.

.items()

Return a list of items.

The method does not load any data into the cache, but does take notice
of uncommitted changes.

For an iterative approach which uses less memory, see the .iteritems()
method.

.remove_files()

Deletes the storage and index files used for the BeeDict.

Closes the BeeDict before proceeding with the removal.

USE WITH CARE !

.iteritems()

Return an iterator which iterates over the dictionary items and returns
(key, value) tuples. The iterator is compatible to Python's for-statement.

The dictionary may not have uncommitted changes !

.iterkeys()

Return an iterator which iterates over the dictionary keys. The iterator is
compatible to Python's for-statement.

The dictionary may not have uncommitted changes !

.itervalues()

Return an iterator which iterates over the dictionary values. The iterator
is compatible to Python's for-statement.

The dictionary may not have uncommitted changes !

5

mxBeeBase - On-disk B+Tree Database Kit for Python

2.1.3 BeeDict Object Attributes

BeeDict objects have the following read-only attributes:

.name

Base name of the dictionary. The implementation uses two files for the
on-disk representation: name.dat and name.idx.

.closed

Closed flag.

.readonly

Read-only flag.

.autocommit

Auto-commit flag.

.FirstKey

Special key object useable to represent the first key in the (sorted)
B+Tree index.

.LastKey

Special key object useable to represent the last key in the (sorted)
B+Tree index.

2.2 BeeDictCursor Objects

BeeDictCursor objects are intended to iterate over the database one item at
a time without the need to read all keys. You can then read/write to the
current cursor position and thus modify the dictionary in place.

Note that modifying the targeted dictionary while using a cursor can cause
the cursor to skip new entries or fail due to deleted items. Especially
deleting the key to which the cursor currently points can cause errors to be
raised. In all other cases, the cursor will be repositioned.

Calling len() on a BeeStringDict object will raise an Error in case
uncommitted changes exist.

6

2. mx.BeeBase.BeeDict Module

2.2.1 BeeDictCursor Object Constructors

BeeDictCursor objects are constructed using the BeeDict .cursor()
method.

2.2.2 BeeDictCursor Object Methods

BeeDictCursor objects have the following methods:

.position(key, value=None)

Position the index cursor to index[key]. If value is given, index[key] ==
value is assured.

key may also be FirstKey or LastKey (in which case value has to be
None).

.next()

Moves to the next entry in the dictionary.

Returns true on success, false if the end-of-data has been reached.

.prev()

Moves to the previous entry in the dictionary.

Returns true on success, false if the end-of-data has been reached.

.read()

Reads the value object from the dict to which the cursor currently
points.

.read_value()

Alias for .read().

.read_key()

Reads the key object from the dict to which the cursor currently points.

.read_item()

Reads the (key, value) item object from the dict to which the cursor
currently points.

.write()

Writes the object to the dict under the key to which the cursor currently
points.

The new data is not written to disk until the dictionary's current transaction
is committed.

7

mxBeeBase - On-disk B+Tree Database Kit for Python

2.2.3 BeeDictCursor Object Attributes

BeeDictCursor don't have any useful attributes. Use the instance methods
to query the key and value objects.

2.3 BeeStringDict Objects

BeeStringDict objects are on-disk dictionaries which use limited size string
keys as index. The strings may not contain embedded \0 characters (if you
need these, have a look at the BeeFixedLengthStringDict object). Values
must be pickleable and can have arbitrary size.

Since hash collisions cannot occur this dictionary type may have some
performance advantages over the standard BeeDict dictionary.

2.3.1 BeeStringDict Object Constructors

BeeStringDict objects are constructed using:

BeeStringDict(name, keysize=10, min_recordsize=0, readonly=0,
recover=0, autocommit=0, validate=0, maxcachesize=None)

Create an instance using name as base name for the data and index files.
Two files will be created: name.dat and name.idx.

keysize gives the maximal size of the strings used as index keys.
min_recordsize is passed to the BeeStorage as indicator of the
minimum size for data records. readonly can be set to true to open the
files in read-only mode, preventing any disk modifications.

To open the dictionary in recovery mode, pass a keyword recover=1.
Then run .recover() and reopen using the normal settings. The
AutoRecover() wrapper can take care of this action for you
automatically.

If autocommit is true the cache control will do an automatic .commit()
whenever the transaction log overflows.

If validate is true, the dictionary will run a validation check after
having successfully opened storage and index. RecreateIndexError or
RecoverError exceptions could be raised in case inconsistencies are
found.

maxcachesize defines the maximum size of the in-memory transaction
cache. It defaults to MAXCACHESIZE if not given.

8

2. mx.BeeBase.BeeDict Module

Note that the keysize is currently not stored in the dictionary itself --
you'll have to store this information in some other form (this may
change in future versions of mxBeeBase).

2.3.2 BeeStringDict Object Methods

BeeStringDict objects have the following methods:

.commit()

Commits all changes and starts a new transaction.

.rollback()

Rolls back the current transaction. All changes are undone.

.changed()

Return true in case the current transaction includes changes to the
database, false otherwise.

.has_key()

Check if the dictionary has an item indexed by key.

Successfully found items are put in the cache for fast subsequent access.

.get(key,default=None)

Get item indexed by key from the dictionary or default if no such item
exists.

This first tries to read the item from cache and reverts to the disk
storage if it is not found.

.cursor(key=FirstKey, default=None)

Return a BeeStringDictCursor instance for the dictionary.

If key is given, the cursor is positioned on that key in the dictionary.
Otherwise, the first entry in the dictionary is used which guarantees that
all entries are scanned.

In case the key is not found, default is returned instead.

Note that cursors operate with the data on disk meaning that any
uncommitted changes will not be seen by the cursor.

.garbage()

Determine the amount of garbage in bytes that has accumulated in the
storage file.

This amount would be freed if .collect() were run.

9

mxBeeBase - On-disk B+Tree Database Kit for Python

.collect()

Run the storage garbage collector.

Storage collection can only be done for writeable dictionaries and then
only if the current transaction does not contain any pending changes.

This can take a while depending on the size of the dictionary.

.recover()

Recover all valid records and recreate the index.

.keys()

Return a list of keys.

The method will raise an error if there are uncommitted changes
pending. Output is sorted ascending according to keys.

For an iterative approach which uses less memory, see the .iterkeys()
method.

.values()

Return a list of values.

The method will raise an error if there are uncommitted changes
pending. Output is sorted ascending according to keys.

For an iterative approach which uses less memory, see the .itervalues()
method.

.items()

Return a list of items.

The method will raise an error if there are uncommitted changes
pending. Output is sorted ascending according to keys.

For an iterative approach which uses less memory, see the .iteritems()
method.

.remove_files()

Deletes the storage and index files used for the BeeDict.

Closes the BeeDict before proceeding with the removal.

USE WITH CARE !

.iteritems()

Return an iterator which iterates over the dictionary items and returns
(key, value) tuples. The iterator is compatible to Python's for-statement.

The dictionary may not have uncommitted changes !

The iteration is done in ascending key order.

10

2. mx.BeeBase.BeeDict Module

.iterkeys()

Return an iterator which iterates over the dictionary keys. The iterator is
compatible to Python's for-statement.

The dictionary may not have uncommitted changes !

The iteration is done in ascending key order.

.itervalues()

Return an iterator which iterates over the dictionary values. The iterator
is compatible to Python's for-statement.

The dictionary may not have uncommitted changes !

Even though only the values are returned, the iteration is done in
ascending key order.

2.3.3 BeeStringDict Object Attributes

BeeDict objects have the following read-only attributes:

.name

Base name of the dictionary. The implementation uses two files for the
on-disk representation: name.dat and name.idx.

.closed

Closed flag.

.readonly

Read-only flag.

.autocommit

Auto-commit flag.

.FirstKey

Special key object useable to represent the first key in the (sorted)
B+Tree index.

.LastKey

Special key object useable to represent the last key in the (sorted)
B+Tree index.

11

mxBeeBase - On-disk B+Tree Database Kit for Python

2.4 BeeStringDictCursor Objects

BeeStringDictCursor objects are intended to iterate over the database one
item at a time without the need to read all keys. You can then read/write to
the current cursor position and thus modify the dictionary in place.

Note that modifying the targeted dictionary while using a cursor can cause
the cursor to skip new entries or fail due to deleted items. Especially
deleting the key to which the cursor currently points can cause errors to be
raised. In all other cases, the cursor will be repositioned.

2.4.1 BeeStringDictCursor Object Constructors

BeeStringDictCursor objects are constructed using the BeeStringDict
.cursor() method.

2.4.2 BeeStringDictCursor Object Methods

BeeStringDictCursor objects have the following methods:

.position(key, value=None)

Position the index cursor to index[key]. If value is given, index[key] ==
value is assured.

key may also be FirstKey or LastKey (in which case value has to be
None).

.next()

Moves to the next entry in the dictionary.

Returns true on success, false if the end-of-data has been reached.

.prev()

Moves to the previous entry in the dictionary.

Returns true on success, false if the end-of-data has been reached.

.read_value()

Alias for .read().

.read_key()

Reads the key object from the dict to which the cursor currently points.

12

2. mx.BeeBase.BeeDict Module

.read_item()

Reads the (key, value) item object from the dict to which the cursor
currently points.

.write()

Writes the object to the dict under the key to which the cursor currently
points.

The new data is not written to disk until the dictionary's current
transaction is committed.

2.4.3 BeeStringDictCursor Object Attributes

BeeStringDictCursor objects have the following read-only attributes:

.key

Key string which dereferences to the current cursor position.

2.5 BeeFixedLengthStringDict Objects

BeeFixedLengthStringDict objects are on-disk dictionaries which use fixed
length string keys as index.

All key strings must have the same length (the keysize). This allows them to
also contain embedded \0 characters, which the BeeStringDict does not.

Values must be pickleable and can have arbitrary size.

Since hash collisions cannot occur this dictionary type may have some
performance advantages over the standard BeeDict dictionary.

2.5.1 Relationship between BeeFixedLengthStringDict and BeeStringDict

BeeFixedLengthStringDict objects inherit from BeeStringDict objects, so
they expose the same API as BeeStringDict objects. The only difference is
their index, which is a BeeFixedLengthStringIndex for
BeeFixedLengthStringDicts.

BeeFixedLengthStringDicts also use BeeStringDictCursors as their cursor
implementation.

13

mxBeeBase - On-disk B+Tree Database Kit for Python

2.5.2 BeeFixedLengthStringDict Object Constructors

BeeFixedLengthStringDict objects are constructed using:

BeeFixedLengthStringDict(name, keysize=10, min_recordsize=0,
readonly=0, recover=0, autocommit=0, validate=0,
maxcachesize=None)

Create an instance using name as base name for the data and index files.
Two files will be created: name.dat and name.idx.

keysize gives the maximal size of the strings used as index keys.
min_recordsize is passed to the BeeStorage as indicator of the
minimum size for data records. readonly can be set to true to open the
files in read-only mode, preventing any disk modifications.

To open the dictionary in recovery mode, pass a keyword recover=1.
Then run .recover() and reopen using the normal settings. The
AutoRecover() wrapper can take care of this action for you
automatically.

If autocommit is true the cache control will do an automatic .commit()
whenever the transaction log overflows.

If validate is true, the dictionary will run a validation check after
having successfully opened storage and index. RecreateIndexError or
RecoverError exceptions could be raised in case inconsistencies are
found.

maxcachesize defines the maximum size of the in-memory transaction
cache. It defaults to MAXCACHESIZE if not given.

Note that the keysize is currently not stored in the dictionary itself --
you'll have to store this information in some other form (this may
change in future versions of mxBeeBase).

2.5.3 BeeFixedLengthStringDict Object Methods

BeeFixedLengthStringDict objects have the same methods as BeeStringDict
objects. Please see section 2.1.2 BeeDict Object Methods for details.

2.5.4 BeeFixedLengthStringDict Object Attributes

BeeFixedLengthStringDict objects have the same attributes as BeeStringDict
objects. Please see section 2.1.3 BeeDict Object Attributes for details.

14

2. mx.BeeBase.BeeDict Module

2.6 Functions

These functions are available in mx.BeeBase:

AutoRecover(Class,*args,**kws)

Wrapper that can be used around the dictionary constructors to provide
automatic recovery whenever needed (if possible).

Example: diskdict = AutoRecover(BeeDict.BeeDict, 'test')

2.7 Constants

These constants are available:

Error

Baseclass for errors related to this module. It is a subclass of Python's
StandardError.

RecreateIndexError

This error is raised in case the index for a dictionary was not found
and/or needs to be recreated by running recovery. It is a subclass of
Error.

RecoverError

This error is raised in case the storage for a dictionary was found to be
in an inconsistent state. It is a subclass of Error.

FirstKey

Special index key object representing the key of the first entry in the
index (B+Tree's sort their data).

LastKey

Special index key object representing the key of the last entry in the
index (B+Tree's sort their data).

MAXCACHESIZE = 1000

Default value for the maximum size of the in-memory transaction cache
used by BeeDict/BeeStringDict objects.

15

mxBeeBase - On-disk B+Tree Database Kit for Python

3. mx.BeeBase.BeeStorage Module

The BeeStorage module provides an on-disk storage format that supports:

• locking, ie. it can be used from multiple processes

• caching, for improved performance

• easy data recovery

Please refer to the source code in mx/BeeBase/BeeStorage.py.

Note:
If you just want to use an on-disk dictionary, you don’t need to access the
BeeStorage module directly.

16

4. mx.BeeBase.BeeIndex Module

4. mx.BeeBase.BeeIndex Module

The BeeIndex module implements fast B+Tree indexes in C. It currently
provides these index types which all map different data types to address
integers:

• BeeStringIndex – keys are size limited strings (may not contain \0
characters)

• BeeFixedLengthStringIndex – keys are fixed size strings (may
contain \0 characters)

• BeeIntegerIndex – keys are Python integers

• BeeFloatIndex – keys are Python floats

Please refer to the source code for details.

Note:
If you just want to use an on-disk dictionary, you don’t need to access the
BeeIndex module directly.

17

mxBeeBase - On-disk B+Tree Database Kit for Python

5. Examples of Use

Here is a very simple one:

from mx.BeeBase import BeeDict

Here is a very simple file based string dictionary:
d = BeeDict.BeeStringDict('BeeStringDict.example', keysize=10)
d['Marc'] = 'Sveta'
d['Thorsten'] = 'Petra'
d['Christian'] = 'Silvia'
d.commit()
print d.values()
d.close()

More examples will eventually appear in the Examples subdirectory of the
package. The mxBeeBase/test.py test script also provides a few examples
which might be handy at times.

18

6. Package Structure

6. Package Structure

[BeeBase]
 Doc/
 [mxBeeBase]
 test.py
 BeeBase.py
 BeeDict.py
 BeeIndex.py
 BeeStorage.py
 showBeeDict.py

Entries enclosed in brackets are packages (i.e. they are directories that
include a __init__.py file). Ones without brackets are just simple
subdirectories that are not accessible via import.

The package imports all symbols from the BeeBase sub module which in
turn imports the extension module, so you only need to 'import BeeBase'
to start working.

19

mxBeeBase - On-disk B+Tree Database Kit for Python

7. Support

eGenix.com is providing commercial support for this package. If you are
interested in receiving information about this service please see the
eGenix.com Support Conditions.

20

http://www.egenix.com/files/python/eGenix-mx-Extensions.html

8. Copyright & License

8. Copyright & License

© 1998-2000, Copyright by IKDS Marc-André Lemburg; All Rights
Reserved. mailto: mal@lemburg.com

© 2000-2011, Copyright by eGenix.com Software GmbH, Langenfeld,
Germany; All Rights Reserved. mailto: info@egenix.com

This software is covered by the eGenix.com Public License Agreement,
which is included in the following section. The text of the license is also
included as file "LICENSE" in the package's main directory.

Parts of this package are based on an ANSI C implementation of a B+Tree
implementation written by Thomas Nieman, Portland, Oregon. The files in
question are btr.c and btr.h which were heavily modified for the purpose of
inclusion in this package by the above author.

The original files were extracted from btr.c -- an ANSI C implementation
included in the source code distribution of

SORTING AND SEARCHING ALGORITHMS: A COOKBOOK

by THOMAS NIEMANN Portland, Oregon

home: http://epaperpress.com/

From the above cookbook:

Permission to reproduce this document, in whole or in part, is given
provided the original web site listed below is referenced, and no
additional restrictions apply. Source code, when part of a software
project, may be used freely without reference to the author.

By downloading, copying, installing or otherwise using the software, you
agree to be bound by the terms and conditions of the following eGenix.com
Public License Agreement.

21

mailto:mal@lemburg.com
mailto:info@egenix.com
http://epaperpress.com/

mxBeeBase - On-disk B+Tree Database Kit for Python

EGENIX.COM PUBLIC LICENSE AGREEMENT

Version 1.1.0

This license agreement is based on the Python CNRI License Agreement, a
widely accepted open-source license.

1. Introduction

This "License Agreement" is between eGenix.com Software, Skills and
Services GmbH ("eGenix.com"), having an office at Pastor-Loeh-Str. 48, D-
40764 Langenfeld, Germany, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. License

Subject to the terms and conditions of this eGenix.com Public License
Agreement, eGenix.com hereby grants Licensee a non-exclusive, royalty-
free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the
Software alone or in any derivative version, provided, however, that the
eGenix.com Public License Agreement is retained in the Software, or in any
derivative version of the Software prepared by Licensee.

3. NO WARRANTY

eGenix.com is making the Software available to Licensee on an "AS IS"
basis. SUBJECT TO ANY STATUTORY WARRANTIES WHICH CAN NOT BE
EXCLUDED, EGENIX.COM MAKES NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, EGENIX.COM MAKES NO AND DISCLAIMS ANY
REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE
WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. LIMITATION OF LIABILITY

EGENIX.COM SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS
OF THE SOFTWARE FOR ANY INCIDENTAL, SPECIAL, OR
CONSEQUENTIAL DAMAGES OR LOSS (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER
PECUNIARY LOSS) AS A RESULT OF USING, MODIFYING OR

22

http://www.opensource.org/licenses/pythonpl.php

8. Copyright & License

DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE
ABOVE EXCLUSION OR LIMITATION MAY NOT APPLY TO LICENSEE.

5. Termination

This License Agreement will automatically terminate upon a material breach
of its terms and conditions.

6. Third Party Rights

Any software or documentation in source or binary form provided along
with the Software that is associated with a separate license agreement is
licensed to Licensee under the terms of that license agreement. This License
Agreement does not apply to those portions of the Software. Copies of the
third party licenses are included in the Software Distribution.

7. General

Nothing in this License Agreement affects any statutory rights of consumers
that cannot be waived or limited by contract.

Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between eGenix.com
and Licensee.

If any provision of this License Agreement shall be unlawful, void, or for any
reason unenforceable, such provision shall be modified to the extent
necessary to render it enforceable without losing its intent, or, if no such
modification is possible, be severed from this License Agreement and shall
not affect the validity and enforceability of the remaining provisions of this
License Agreement.

This License Agreement shall be governed by and interpreted in all respects
by the law of Germany, excluding conflict of law provisions. It shall not be
governed by the United Nations Convention on Contracts for International
Sale of Goods.

This License Agreement does not grant permission to use eGenix.com
trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party.

23

mxBeeBase - On-disk B+Tree Database Kit for Python

24

The controlling language of this License Agreement is English. If Licensee
has received a translation into another language, it has been provided for
Licensee's convenience only.

8. Agreement

By downloading, copying, installing or otherwise using the Software,
Licensee agrees to be bound by the terms and conditions of this License
Agreement.

For question regarding this License Agreement, please write to:

eGenix.com Software, Skills and Services GmbH

Pastor-Loeh-Str. 48

D-40764 Langenfeld

Germany

	Introduction
	Limitations

	mx.BeeBase.BeeDict Module
	BeeDict Objects
	BeeDict Object Constructors
	BeeDict Object Methods
	BeeDict Object Attributes

	BeeDictCursor Objects
	BeeDictCursor Object Constructors
	BeeDictCursor Object Methods
	BeeDictCursor Object Attributes

	BeeStringDict Objects
	BeeStringDict Object Constructors
	BeeStringDict Object Methods
	BeeStringDict Object Attributes

	BeeStringDictCursor Objects
	BeeStringDictCursor Object Constructors
	BeeStringDictCursor Object Methods
	BeeStringDictCursor Object Attributes

	BeeFixedLengthStringDict Objects
	Relationship between BeeFixedLengthStringDict and BeeStringDict
	BeeFixedLengthStringDict Object Constructors
	BeeFixedLengthStringDict Object Methods
	BeeFixedLengthStringDict Object Attributes

	Functions
	Constants

	mx.BeeBase.BeeStorage Module
	mx.BeeBase.BeeIndex Module
	Examples of Use
	Package Structure
	Support
	Copyright & License

